| 38 | Firstly note that each run has different box sizes. We have "small box" and a "large box" runs. The shear 0 and 15 data sets have a small box size, i.e. (x, y, z) = (62.5, 75 75), where as 30 and 60 have a larger box, i.e. (x, y, z) = (200, 75, 75). We have chosen these parameters given the size of the collision is dependent on the size of the shear angle. |
| 39 | |
| 40 | We want to be able to extract the energies in the collision region, so we need to "clip" the HDF5 file in VisIt that contains our data. We use this using the ''box operator'' on our data. The clipped box should be 40 pc in y and z to fulling encompass the cylindrical collision region. However since our box varies in x, we need to clip the box differently for each run. For shear 0 and 15 we clipped the simulation box for 20 pc. On the other hand we clipped the shear 30 case by 24 pc, and shear 60 for 70 pc. To do this you take the length of one of the parameters of the box, half it, and then consider that maximum and minimum using the box operator. |
| 41 | |
| 42 | To pick up the values for the energies simply create expressions for them (see above) in VisIt. Then go to Query > Weighted Variable Query. Then you can find the value for particular times. Here we sampled each run for the following frames: 0, 101, 202, 273 (and 328 for shear 60). |
| 43 | |
| 44 | |