| 30 | |
| 31 | So setting up the initial solution can be accomplished by the following: |
| 32 | |
| 33 | First start with the assumption that the retarted time is the current time |
| 34 | |
| 35 | [[latex($t_r=t$)]] |
| 36 | |
| 37 | |
| 38 | DO |
| 39 | |
| 40 | Calculate the displacement vector from the primary at the retarded time |
| 41 | |
| 42 | [[latex($\vec{d} = \vec{x}-\vec{X}_p(t_r)$)]] |
| 43 | |
| 44 | Calculate the wind normal so that |
| 45 | |
| 46 | [[latex($(v_w \hat{n} + \vec{V}_p(t_r)) \times \vec{d} = 0$)]] |
| 47 | |
| 48 | [[latex($\hat{n} \times \vec{d} = \frac{-1}{v_w}\vec{V}_p(t_r) \times \vec{d}$)]] |
| 49 | |
| 50 | It is possible to solve [[latex($\hat{a} \times \vec{b} = \vec{c}$)]] for the unit vector [[latex($\hat{a}$)]] |
| 51 | |
| 52 | [[latex($\hat{a}=\frac{\vec{b} \times \vec{c} + \sqrt{\vec{b} \cdot \vec{b} - \frac{(\vec{b} \times \vec{c}) \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot \vec{b}}} \vec{b}}{\vec{b} \cdot \vec{b}}$)]] |
| 53 | |
| 54 | |
| 55 | Once we have an estimate for [[latex($\hat{n}$)]] we can improve the estimate by modifying the trajectory to account for the gravity from the secondary as follows: |
| 56 | |
| 57 | Calculate the wind velocity from the primary |
| 58 | |
| 59 | [[latex($\vec{v}(t_r, x_p(t_r))=|v_w \hat{n}+\vec{V}_p(t_r)|$)]] |
| 60 | |
| 61 | Now solve for the trajectory from the primary that leaves at [[latex($\vec{X_p}(t_r)$)]] at velocity [[latex($\vec{v}(t_r, x_p(t_r))$)]] taking into account the force from the secondary. |
| 62 | |
| 63 | Determine the path's distance of closest approach to [[latex($\vec{x}$)]] and call that [[latex($\vec{x}'(t')$)]] |
| 64 | |
| 65 | Estimate the change in initial velocity needed [[latex($\vec{v'}(t_r,x_p(t_r) = \vec{v'}(t_r,x_p(t_r))+\frac{x-x'(t')}{t'-t_r}$)]] |
| 66 | |
| 67 | |
| 68 | |
| 69 | |
| 70 | |
| 71 | |
| 72 | Update the retarded time using the new distance and wind speed |
| 73 | |
| 74 | [[latex($t_r=t-\frac{d}{v}$)]] |
| 75 | |
| 76 | END DO |
| 77 | |
| 78 | The only problem occurs when there are multiple solutions for the retarded time... |
| 79 | |
| 80 | This will occur once we reach distances of order [[latex($v_w/\Omega$)]] |
| 81 | |
| 82 | If we switch to a rotating frame that rotates counter to the orbit so the angular speed is [[latex($\Omega$)]], then |
| 83 | |
| 84 | [[latex($\vec{v}_r=\vec{v}-\Omega \times \vec{x}$)]] |
| 85 | |
| 86 | and |
| 87 | |
| 88 | [[latex($\alpha=\alpha_0+\Omega t$)]] |
| 89 | |
| 90 | so that |
| 91 | |
| 92 | [[latex($\Omega t_r+\alpha = \alpha_0 - \Omega \frac{d}{v_w}$)]] |
| 93 | |
| 94 | |
| 95 | |
| 96 | |
| 97 | = Threading = |