Changes between Version 15 and Version 16 of u/johannjc


Ignore:
Timestamp:
04/13/12 13:13:16 (13 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc

    v15 v16  
    2828== Random Ruminations ==
    2929
     30
     31So setting up the initial solution can be accomplished by the following:
     32
     33First start with the assumption that the retarted time is the current time
     34
     35[[latex($t_r=t$)]]
     36
     37
     38DO
     39
     40  Calculate the displacement vector from the primary at the retarded time
     41
     42  [[latex($\vec{d} = \vec{x}-\vec{X}_p(t_r)$)]]
     43
     44  Calculate the wind normal so that
     45
     46  [[latex($(v_w \hat{n} + \vec{V}_p(t_r)) \times \vec{d} = 0$)]]
     47 
     48  [[latex($\hat{n} \times \vec{d} = \frac{-1}{v_w}\vec{V}_p(t_r) \times \vec{d}$)]]
     49
     50  It is possible to solve [[latex($\hat{a} \times \vec{b} = \vec{c}$)]] for the unit vector [[latex($\hat{a}$)]]
     51
     52  [[latex($\hat{a}=\frac{\vec{b} \times \vec{c} + \sqrt{\vec{b} \cdot \vec{b} - \frac{(\vec{b} \times \vec{c}) \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot \vec{b}}} \vec{b}}{\vec{b} \cdot \vec{b}}$)]]
     53
     54
     55  Once we have an estimate for [[latex($\hat{n}$)]] we can improve the estimate by modifying the trajectory to account for the gravity from the secondary as follows:
     56
     57   Calculate the wind velocity from the primary
     58 
     59   [[latex($\vec{v}(t_r, x_p(t_r))=|v_w \hat{n}+\vec{V}_p(t_r)|$)]]
     60
     61   Now solve for the trajectory from the primary that leaves at [[latex($\vec{X_p}(t_r)$)]] at velocity [[latex($\vec{v}(t_r, x_p(t_r))$)]] taking into account the force from the secondary. 
     62
     63   Determine the path's distance of closest approach to [[latex($\vec{x}$)]] and call that [[latex($\vec{x}'(t')$)]]
     64 
     65   Estimate the change in initial velocity needed [[latex($\vec{v'}(t_r,x_p(t_r) = \vec{v'}(t_r,x_p(t_r))+\frac{x-x'(t')}{t'-t_r}$)]]
     66
     67
     68
     69
     70
     71
     72  Update the retarded time using the new distance and wind speed
     73
     74  [[latex($t_r=t-\frac{d}{v}$)]]
     75
     76END DO
     77
     78The only problem occurs when there are multiple solutions for the retarded time...
     79
     80This will occur once we reach distances of order [[latex($v_w/\Omega$)]]
     81
     82If we switch to a rotating frame that rotates counter to the orbit so the angular speed is [[latex($\Omega$)]], then
     83
     84[[latex($\vec{v}_r=\vec{v}-\Omega \times \vec{x}$)]]
     85
     86and
     87
     88[[latex($\alpha=\alpha_0+\Omega t$)]]
     89
     90so that
     91
     92[[latex($\Omega t_r+\alpha = \alpha_0 - \Omega \frac{d}{v_w}$)]]
     93
     94
     95
     96
     97= Threading =
    3098 What is the maximum combined work we can give each processor
    3199
     
    39107
    40108
    41