29 | | Thoughts on binary sims |
30 | | |
31 | | given the velocity as a function of position and time |
32 | | |
33 | | [[latex($\vec{v}(\vec{x})=(v_w-R_p \Omega \sin{q}) [\cos{\eta}, \sin{\eta}] + v_w \sin{\gamma}$)]] |
34 | | |
35 | | where |
36 | | |
37 | | Start with the assumption that |
38 | | |
39 | | [[latex($t_0=t$)]] |
40 | | |
41 | | [[latex($|v|=v_w$)]] |
42 | | |
43 | | DO |
44 | | [[latex($d = |\vec{x}-\vec{X}_p(t_r)|$)]] |
45 | | |
46 | | [[latex($t_r=t-\frac{d}{v_w}$)]] |
47 | | |
48 | | [[latex($\sin {q} =\frac{|x|}{d}\sin{(\Omega t_r+\alpha)}$)]] |
49 | | |
50 | | [[latex($|v|=v_w-R_p \Omega \sin{q}$)]] |
51 | | END DO |
52 | | |
53 | | [[latex($\sin {\eta} = \frac{R_p}{d}\sin{(\Omega t_r+\alpha)}$)]] |
54 | | |
55 | | If we switch to a rotating frame that rotates counter to the orbit so the angular speed is [[latex($\Omega$)]], then |
56 | | |
57 | | [[latex($\vec{v}_r=\vec{v}-\Omega \times \vec{x}$)]] |
58 | | |
59 | | and |
60 | | |
61 | | [[latex($\alpha=\alpha_0+\Omega t$)]] |
62 | | |
63 | | so that |
64 | | |
65 | | [[latex($\Omega t_r+\alpha = \alpha_0 - \Omega \frac{d}{v_w}$)]] |
66 | | |