33 | | First we have position of primary |
34 | | |
35 | | [[latex($\vec{X_p}=R_p [\cos{\Omega t}, \sin{\Omega} t, 0]$)]] |
36 | | |
37 | | and velocity of primary as |
38 | | |
39 | | [[latex($\vec{v_p}=R_p \Omega [-\sin{\Omega t}, \cos{\Omega t}, 0]$)]] |
40 | | |
41 | | The velocity [[latex($v_0$)]] at the surface of the primary [[latex($x_0$)]] can be written as |
42 | | |
43 | | [[latex($\vec{v}_0=\vec{v_p}+\hat{x}_0 v_w$)]] |
| 33 | [[latex($\vec{v}(\vec{x})=(v_w-R_p \Omega \sin{q}) [\cos{\eta}, \sin{\eta}] + v_w \sin{\gamma}$)]] |
64 | | |
65 | | |
66 | | |
67 | | |
68 | | |
69 | | |
70 | | |
71 | | |
72 | | |
73 | | |
74 | | |
75 | | |
76 | | |
77 | | |
78 | | == Approximations == |
79 | | |
80 | | |
81 | | We can simplify things if we assume that [[latex($v_w >> R_p\Omega$)]] |
82 | | |
83 | | [[latex($\vec{x}-\vec{x}_0(t_0) = \hat{x}_0 v_w (t-t_0)$)]] |
84 | | |
85 | | and that [[latex($|x| >> |x_0|$)]] since we can then solve for [[latex($t-t_0=|x|/v_w$)]]. |
86 | | |
87 | | Then we can calculate [[latex($\vec{v_p}(t_0)= R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0]$)]] where [[latex($\phi=-\Omega |x|/v_w$)]] |
88 | | |
89 | | and [[latex($\vec{X_p(t_0)}=R_p [\cos{(\Omega t + \phi)}, \sin{(\Omega t + \phi)}, 0]$)]] |
90 | | |
91 | | |
92 | | |
93 | | The wind arriving at [[latex($x(t)$)]] left the surface of the primary when it was at [[latex($X_p(t_0)$)]] travelling at a speed somewhere between [[latex($v_w-R\Omega$)]] and [[latex($v_w+R\Omega$)]]. We can make the assumption that the wind speed goes like [[latex($v_w+R\Omega\sin(\gamma)$)]] where [[latex($\gamma=\alpha-\Omega t_0$)]] where [[latex($\alpha$)]] is the angle towards [[latex($x$)]] and [[latex($\gamma$)]] is the angle between [[latex($\vec{x}(t)$)]] and [[latex($X_p(t_0)$)]] |
94 | | |
95 | | |
96 | | We then have that [[latex($\vec{j}=\vec{x}\times\vec{v} = |x|(v_w+R\Omega\sin{\gamma})\sin{\gamma}$)]] |
97 | | |
98 | | and [[latex($\gamma = |
99 | | |
100 | | |
101 | | |
102 | | |
103 | | |
104 | | |
105 | | |
106 | | The wind that is arriving at [[latex($x(t)$)]] left from the surface of the primary when it was at a position [[latex($X_p(t_0)$)]] travelling at a velocity of [[latex($v_p(t_0) + v_w \hat{n}$)]] |
107 | | where [[latex($\hat{n}=\frac{x(t)-X'(t)}{|x(t)-X'(t)|}$)]] where [[latex($X'(t)=X_p(t_0)+v_p(t_0)(t-t_0)$)]]. |
108 | | |
109 | | If we consider the specific angular momentum [[latex($\vec{j}=\vec{x} \times \vec{v}$)]] we can identify three components: |
110 | | |
111 | | [[latex($\vec{j}=\vec{x} \times \vec{v}_p(t_0)+v_w \vec{x} \times \hat{n}$)]] |
112 | | |
113 | | |
114 | | now [[latex($\vec{n} = |x|[\cos{\alpha}, \sin{\alpha}, 0]-R_p[\cos{\Omega t_0}, \sin{\Omega t_0}, 0] - R_p \Omega (t-t_0) [-\sin{\Omega t_0}, \cos{\Omega t_0}, 0]$)]] |
115 | | |
116 | | |
117 | | |
118 | | |
119 | | |
120 | | |
121 | | Furthermore, [[latex($\vec{x}-\vec{v}_p(t_0)(t-t_0)=\vec{x}_0(t_0)+\hat{x}_0v_w(t-t_0)$)]] |
122 | | |
123 | | |
124 | | And since [[latex($\vec{x_0}=\vec{X}_p+S\hat{x}_0$)]] |
125 | | |
126 | | |
127 | | we have |
128 | | |
129 | | [[latex($\vec{x}-\vec{v}_p(t_0)(t-t_0)-\vec{X}_p(t_0)=S\hat{x}_0+\hat{x}_0v_w(t-t_0)$)]] |
130 | | |
131 | | and [[latex($\hat{x}_0 = \frac{\vec{x}-\vec{v}_p(t_0)(t-t_0)-\vec{X}_p(t_0)}{S+v_w(t-t_0)}$)]] |
132 | | |
133 | | |
134 | | so that [[latex($\vec{v}=\vec{v}_0=\vec{v_p}+\hat{x}_0 v_w=R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0] +\frac{\vec{x}-\vec{v}_p(t_0)(t-t_0)-\vec{X}_p(t_0)}{S+v_w(t-t_0)}v_w$)]] |
135 | | |
136 | | [[latex($\vec{v}=R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0] \left ( \frac{1}{1+\frac{|x|}{S}} \right) + \hat{x} v_w \left(\frac{1}{1+\frac{S}{|x|}} \right ) - \frac{\vec{X}_p}{|x|} v_w \left ( \frac{1}{1+\frac{S}{|x|}}\right )$)]] |
137 | | |
138 | | or |
139 | | |
140 | | [[latex($\vec{v} \approx \hat{x}v_w-\frac{R_p}{|x|} v_w [\cos{(\Omega t+\phi)}, \sin{(\Omega t +\phi)}, 0] + \frac{S}{|x|} R_p\Omega [-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0]$)]] |
141 | | |
142 | | and if we express [[latex($\vec{x}=|x|[[\cos(\alpha), \sin(\alpha), 0]$)]] then [[latex($j=\vec{x} \times \vec{v}=-R_p v_w \sin(\beta)+R_p S\Omega \cos(\beta)$)]] where [[latex($\beta=\alpha - \Omega t - \phi$)]] and in particular - if we consider the orbit of the secondary we have [[latex($\alpha=\Omega t + \pi$)]] so that [[latex($j=-R_p v_w \sin(\pi-\phi)$)]] |