| 88 | |
| 89 | and [[latex($\vec{X_p(t_0)}=R_p [\cos{(\Omega t + \phi)}, \sin{(\Omega t + \phi)}, 0]$)]] |
| 90 | |
| 91 | |
| 92 | |
| 93 | The wind arriving at [[latex($x(t)$)]] left the surface of the primary when it was at [[latex($X_p(t_0)$)]] travelling at a speed somewhere between [[latex($v_w-R\Omega$)]] and [[latex($v_w+R\Omega$)]]. We can make the assumption that the wind speed goes like [[latex($v_w+R\Omega\sin(\gamma)$)]] where [[latex($\gamma=\alpha-\Omega t_0$)]] where [[latex($\alpha$)]] is the angle towards [[latex($x$)]] and [[latex($\gamma$)]] is the angle between [[latex($\vec{x}(t)$)]] and [[latex($X_p(t_0)$)]] |
| 94 | |
| 95 | |
| 96 | We then have that [[latex($\vec{j}=\vec{x}\times\vec{v} = |x|(v_w+R\Omega\sin{\gamma})\sin{\gamma}$)]] |
| 97 | |
| 98 | and [[latex($\gamma = |
| 99 | |
| 100 | |
| 101 | |
| 102 | |
| 103 | |
| 104 | |
| 105 | |
| 106 | The wind that is arriving at [[latex($x(t)$)]] left from the surface of the primary when it was at a position [[latex($X_p(t_0)$)]] travelling at a velocity of [[latex($v_p(t_0) + v_w \hat{n}$)]] |
| 107 | where [[latex($\hat{n}=\frac{x(t)-X'(t)}{|x(t)-X'(t)|}$)]] where [[latex($X'(t)=X_p(t_0)+v_p(t_0)(t-t_0)$)]]. |
| 108 | |
| 109 | If we consider the specific angular momentum [[latex($\vec{j}=\vec{x} \times \vec{v}$)]] we can identify three components: |
| 110 | |
| 111 | [[latex($\vec{j}=\vec{x} \times \vec{v}_p(t_0)+v_w \vec{x} \times \hat{n}$)]] |
| 112 | |
| 113 | |
| 114 | now [[latex($\vec{n} = |x|[\cos{\alpha}, \sin{\alpha}, 0]-R_p[\cos{\Omega t_0}, \sin{\Omega t_0}, 0] - R_p \Omega (t-t_0) [-\sin{\Omega t_0}, \cos{\Omega t_0}, 0]$)]] |
| 115 | |
| 116 | |
| 117 | |
| 118 | |