Changes between Version 10 and Version 11 of u/johannjc


Ignore:
Timestamp:
03/31/12 13:18:28 (13 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc

    v10 v11  
    2828
    2929Thoughts on binary sims
     30
     31[[Image(binary.png, width=400)]]
    3032
    3133First we have position of primary
     
    5961which gives two non-linear equations which along with the constraint that [[latex($|\vec{x}_0-\vec{X}_p| = S$)]] can be solved for [[latex($\vec{x_0}$)]] and [[latex($t_0$)]].
    6062
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78== Approximations ==
     79
     80
    6181We can simplify things if we assume that [[latex($v_w >> R_p\Omega$)]]
    6282
     
    6686
    6787Then we can calculate [[latex($\vec{v_p}(t_0)= R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0]$)]] where [[latex($\phi=-\Omega |x|/v_w$)]]
     88
     89and [[latex($\vec{X_p(t_0)}=R_p [\cos{(\Omega t + \phi)}, \sin{(\Omega t + \phi)}, 0]$)]]
     90
     91
     92
     93The wind arriving at [[latex($x(t)$)]] left the surface of the primary when it was at [[latex($X_p(t_0)$)]] travelling at a speed somewhere between [[latex($v_w-R\Omega$)]] and [[latex($v_w+R\Omega$)]].  We can make the assumption that the wind speed goes like [[latex($v_w+R\Omega\sin(\gamma)$)]] where [[latex($\gamma=\alpha-\Omega t_0$)]] where [[latex($\alpha$)]] is the angle towards [[latex($x$)]] and [[latex($\gamma$)]] is the angle between [[latex($\vec{x}(t)$)]] and [[latex($X_p(t_0)$)]]
     94
     95
     96We then have that [[latex($\vec{j}=\vec{x}\times\vec{v} = |x|(v_w+R\Omega\sin{\gamma})\sin{\gamma}$)]]
     97
     98and [[latex($\gamma =
     99
     100
     101
     102
     103
     104
     105
     106The wind that is arriving at [[latex($x(t)$)]] left from the surface of the primary when it was at a position [[latex($X_p(t_0)$)]] travelling at a velocity of [[latex($v_p(t_0) + v_w \hat{n}$)]]
     107where [[latex($\hat{n}=\frac{x(t)-X'(t)}{|x(t)-X'(t)|}$)]] where [[latex($X'(t)=X_p(t_0)+v_p(t_0)(t-t_0)$)]].
     108
     109If we consider the specific angular momentum [[latex($\vec{j}=\vec{x} \times \vec{v}$)]] we can identify three components:
     110
     111[[latex($\vec{j}=\vec{x} \times \vec{v}_p(t_0)+v_w \vec{x} \times \hat{n}$)]]
     112
     113
     114now [[latex($\vec{n} = |x|[\cos{\alpha}, \sin{\alpha}, 0]-R_p[\cos{\Omega t_0}, \sin{\Omega t_0}, 0] - R_p \Omega (t-t_0) [-\sin{\Omega t_0}, \cos{\Omega t_0}, 0]$)]]
     115
     116
     117
     118
    68119
    69120