| 55 | or |
| 56 | |
| 57 | [[latex($\vec{x}-\vec{x}_0(t_0) = (\vec{v_p}(t_0)+\frac{\vec{x}_0(t_0)-\vec{X_p}(t_0)}{|\vec{x}_0(t_0)-\vec{X_p}(t_0)|} v_w) (t-t_0)$)]] |
| 58 | |
| 59 | which gives two non-linear equations which along with the constraint that [[latex($|\vec{x}_0-\vec{X}_p| = S$)]] can be solved for [[latex($\vec{x_0}$)]] and [[latex($t_0$)]]. |
| 60 | |
| 61 | We can simplify things if we assume that [[latex($v_w >> R_p\Omega$)]] |
| 62 | |
| 63 | [[latex($\vec{x}-\vec{x}_0(t_0) = \hat{x}_0 v_w (t-t_0)$)]] |
| 64 | |
| 65 | and that [[latex($|x| >> |x_0|$)]] since we can then solve for [[latex($t-t_0=|x|/v_w$)]]. |
| 66 | |
| 67 | Then we can calculate [[latex($\vec{v_p}(t_0)= R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0]$)]] where [[latex($\phi=-\Omega |x|/v_w$)]] |
| 68 | |
| 69 | |
| 70 | Furthermore, [[latex($\vec{x}-\vec{v}_p(t_0)(t-t_0)=\vec{x}_0(t_0)+\hat{x}_0v_w(t-t_0)$)]] |
| 71 | |
| 72 | |
| 73 | And since [[latex($\vec{x_0}=\vec{X}_p+S\hat{x}_0$)]] |
| 74 | |
| 75 | |
| 76 | we have |
| 77 | |
| 78 | [[latex($\vec{x}-\vec{v}_p(t_0)(t-t_0)-\vec{X}_p(t_0)=S\hat{x}_0+\hat{x}_0v_w(t-t_0)$)]] |
| 79 | |
| 80 | and [[latex($\hat{x}_0 = \frac{\vec{x}-\vec{v}_p(t_0)(t-t_0)-\vec{X}_p(t_0)}{S+v_w(t-t_0)}$)]] |
| 81 | |
| 82 | |
| 83 | so that [[latex($\vec{v}=\vec{v}_0=\vec{v_p}+\hat{x}_0 v_w=R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0] +\frac{\vec{x}-\vec{v}_p(t_0)(t-t_0)-\vec{X}_p(t_0)}{S+v_w(t-t_0)}v_w$)]] |
| 84 | |
| 85 | [[latex($\vec{v}=R_p\Omega[-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0] \left ( \frac{1}{1+\frac{|x|}{S}} \right) + \hat{x} v_w \left(\frac{1}{1+\frac{S}{|x|}} \right ) - \frac{\vec{X}_p}{|x|} v_w \left ( \frac{1}{1+\frac{S}{|x|}}\right )$)]] |
| 86 | |
| 87 | or |
| 88 | |
| 89 | [[latex($\vec{v} \approx \hat{x}v_w-\frac{R_p}{|x|} v_w [\cos{(\Omega t+\phi)}, \sin{(\Omega t +\phi)}, 0] + \frac{S}{|x|} R_p\Omega [-\sin{(\Omega t+\phi)}, \cos{(\Omega t +\phi)}, 0]$)]] |
| 90 | |
| 91 | and if we express [[latex($\vec{x}=|x|[[\cos(\alpha), \sin(\alpha), 0]$)]] then [[latex($j=\vec{x} \times \vec{v}=-R_p v_w \sin(\beta)+R_p S\Omega \cos(\beta)$)]] where [[latex($\beta=\alpha - \Omega t - \phi$)]] and in particular - if we consider the orbit of the secondary we have [[latex($\alpha=\Omega t + \pi$)]] so that [[latex($j=-R_p v_w \sin(\pi-\phi)$)]] |