Changes between Version 5 and Version 6 of u/johannjc/scratchpad
- Timestamp:
- 08/12/13 17:22:25 (11 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad
v5 v6 1 {{{ 2 #!latex 3 \[ \left [ 4 \begin{array}{c} 5 \partial_t{\rho_1} \\ 6 \partial_t{v_1} \\ 7 \partial_{xx}{\phi_1} \\ 8 \end{array} 9 \right ] 10 =\left [ 11 \begin{array}{c} 12 -\rho_0\partial_x v_1 \\ 13 -\frac{c_s^2}{\rho_0}\partial_x \rho_1 -\partial_x \phi_1 \\ 14 4 \pi G \rho_1 15 \end{array} 16 \right ] = \left [ 17 \begin{array}{ccc} 18 0 & -\rho_0\partial_x & 0 \\ 19 -\frac{c_s^2}{\rho_0}\partial_x & 0 & -\partial_x \\ 20 4 \pi G & 0 & 0 21 \end{array} 22 \right ] 23 \left [ 24 \begin{array}{c} 25 \rho_1\\ 26 v_1 \\ 27 \phi_1 \\ 28 \end{array} 29 \right ] 30 \] 31 \[ 32 \partial_t 33 \left [ 34 \begin{array}{c} 35 \rho_1 \\ 36 v_1 \\ 37 \end{array} 38 \right ] 39 = 40 \left [ 41 \begin{array}{cc} 42 0 & -ik\rho_0 \\ 43 -ik\frac{c_s^2}{\rho_0} + \frac{4 \pi i G}{k} & 0 \\ 44 \end{array} 45 \right ] 46 \left [ 47 \begin{array}{c} 48 \rho_1\\ 49 v_1 \\ 50 \end{array} 51 \right ] 52 \] 1 So Marshak boundary conditions are mixed 53 2 54 which gives a characteristic equation 3 [[latex($\left . \left ( E-\frac{2}{3\kappa}\nabla{E} \right ) \right |_0 = \frac{4}{c} F$)]] 55 4 56 }}} 57 [[latex($\lambda^2 + k^2 c_s^2 -4 \pi G \rho_0 = 0$)]] 5 If we discretize this equation we get (E_g is ghost zone, E_i is internal zone at left edge) 6 7 [[latex($E_g + E_i - \frac{4}{3\kappa \Delta x} \left ( E_i - E_g \right ) = \frac{8}{c} F$)]] 8 9 which we can solve for [[latex($E_g$)]] as 10 11 [[latex($E_g = \frac{\left ( 1 - \frac{3\kappa \Delta x}{4} \right ) E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}$)]] 58 12 59 13 and we have 14 [[latex($E_g - E_i = \frac{\left ( -\frac{6\kappa \Delta x}{4} \right ) E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}$)]] 60 15 61 [[latex($\lambda = \pm \sqrt{4 \pi G \rho_0-k^2 c_s^2}$)]] 16 and 62 17 63 with eigen vectors 18 [[latex($E_g + E_i = \frac{ 2 E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}$)]] 64 19 65 20 66 {{{ 67 #!latex 68 \[ 69 \left [ 70 \begin{array}{c} 71 k \rho_0 \\ 72 i \lambda 73 \end{array} 74 \right ] 75 \] 76 }}} 21 If we then plug this into the time evolution equation: 77 22 78 So for stable waves we have [[latex($\lambda = i\omega$)]] where [[latex($\omega$)]] is real. And there are two solutions... 23 [[latex($E^{n+1}_i-E^{n}_i = \alpha \left ( E_g^*-E_i^* \right )$)]] 79 24 80 {{{ 81 #!latex 82 \[ 83 \left [ 84 \begin{array}{c} 85 \rho_1 \\ 86 v_1 \\ 87 \end{array} 88 \right ] 89 = 90 \left [ 91 \begin{array}{c} 92 d\rho e^{\pm i \omega t} e^{i k x} \\ 93 dv e^{\pm i \omega t} e^{i k x} \\ 94 \end{array} 95 \right ] 96 \] 97 }}} 98 where 25 we get 99 26 100 {{{ 101 #!latex 102 $dv = -\frac{\omega}{k}\frac{d\rho}{\rho}$ 103 }}} 27 [[latex($E^{n+1}_i-E^{n}_i = \alpha \left ( \frac{-\frac{6\kappa \Delta x}{4} E_i^* + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}} \right )$)]] 104 28 105 So if [[latex($\lambda=\omega$)]] where [[latex($\omega$)]] is real - then we have two solutions as well.106 29 107 {{{ 108 #!latex 109 \[ 110 \left [ 111 \begin{array}{c} 112 \rho_1 \\ 113 v_1 \\ 114 \end{array} 115 \right ] 116 = 117 \left [ 118 \begin{array}{c} 119 d\rho e^{\pm \omega t} e^{i k x} \\ 120 dv e^{\pm \omega t} e^{i k x + i \pi} \\ 121 \end{array} 122 \right ] 123 \] 124 }}} 30 where [[latex($E^* = \psi E^{n+1} + \bar{\psi} E^n$)]] is the time averaged energy and depends on the time stepping (crank-nicholson or forward euler) 31 32 33 and finally we arrive at 34 35 [[latex($\left ( 1+\frac{2 \psi \alpha}{1+\frac{4}{3\kappa\Delta x}} \right ) E^{n+1}_i = \left ( 1-\frac{2 \bar{\psi} \alpha}{1+\frac{4}{3\kappa\Delta x}} \right ) E^{n}_i+ \frac{\frac{8\alpha}{c} F}{1+\frac{4}{3\kappa \Delta x}}$)]] 36 37 This is very similar to what we normally get ie 38 39 [[latex($\left ( 1+\psi \alpha \right ) E^{n+1}_i - \psi \alpha E^{n+1}_g = \left ( 1-\bar{\psi} \alpha \right ) E^{n}_i + \bar{\psi} \alpha E^{n}_g$)]] 40 41 42 and noting that [[latex($\alpha = \frac{c \Delta t}{3 \kappa \Delta x^2}$)]] for the limiter [[latex($\lambda=1/3$)]] 43 44 or flux is just 45 46 [[latex($F \frac{\Delta t}{\Delta x} \rightarrow F \frac{\Delta t}{\Delta x} \frac{2}{1+\frac{3\kappa\Delta x}{4}}$)]] 125 47 126 48 127 49 50 Note that [[latex($E^{n+1}_i = E^{n}_i$)]] for 128 51 52 53 54 4 \alpha \psi