Changes between Version 27 and Version 28 of u/johannjc/scratchpad


Ignore:
Timestamp:
05/10/15 12:26:00 (10 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad

    v27 v28  
    1 [[latex($M'=M+\sum{\Delta m_i}$)]]
     1== Outflows ==
     2Particles can launch outflows following the description in [http://arxiv.org/pdf/1406.3625.pdf Federrath et al 2014]
    23
    3 [[latex($M'V'=MV+\sum{\Delta m_i v_i}$)]]
     4The basic problem is to apply the following outflow function, but in a discrete way that is numerically symmetric and exact. 
    45
    5 [[latex($V' = V \left ( \frac{1}{1+\epsilon} \right ) + $)]]
     6The change in rho has the following functional form
     7[[latex($d \rho=\rho_0 \mathcal{R}(r) \Theta(\theta)$)]]
    68
    7 [[latex($M'R' = M'R + \sum{\Delta m_i \left ( r_i - R \right )}=MR + \sum{\Delta m_i r_i }$)]]
     9as does the change in momentum
     10[[latex($d\mathbf{p}=d \rho \mathbf{\mathcal{V}}(\theta)$)]]
    811
    9 [[latex($S'=S+\sum{\Delta m_i \left ( r_i -R \right ) \times v_i}$)]]
     12Since we want the total mass to equal some fraction of the accreted mass, as well as the top and bottom mass injection to be symmetric, we must have
    1013
    11 However, a better treatment is to conserve angular momentum.
    12 
    13 [[latex($L=MR \times V$)]]
    14 
    15 [[latex($J=L+S$)]]
    16 
    17 [[latex($J'=J +\sum{\Delta m_i r_i  \times v_i}$)]]
    18 
    19 [[latex($S'=S + MR \times V - M'R' \times V' + \sum{\Delta m_i r_i  \times v_i}$)]]
    20 
    21 [[latex($S'=S + MR \times V - M'R' \times V' + \sum{\Delta m_i r_i  \times v_i}$)]]
     14[[latex($\displaystyle{\sum_{top}{d \rho_i}}=\displaystyle{\sum_{bottom}{d \rho_ i}} = \frac{f \dot{M}}{2}$)]]
    2215
    2316
    24 [[latex($S' = S+MR \times V - \left( MR + \sum{\Delta m_i r_i} \right ) \times \frac{MV + \sum{\Delta m_i v_i}}{M+\sum{m_i}}+\sum{\Delta m_i r_i  \times v_i}$)]]
     17And since we also must have the total momentum be balanced, we need to have a magnitude constraint
    2518
    26 which if we approximate to first order in $\frac{\sum{\Delta m_i}}{M}$
     19[[latex($\displaystyle{\sum_{top}{|dp^j_i|}}+\displaystyle{\sum_{bottom}{|dp^j_i|}} = f \dot{M}\mathcal{V}_0$)]]
    2720
    28 [[latex($S' \approx S+MR \times V - \left( MR + \sum{\Delta m_i r_i} \right ) \times \left ( V + \frac{\sum{\Delta m_i v_i}}{M} \right ) \left (1 -\frac{\sum{\Delta m_i}}{M} \right )+\sum{\Delta m_i r_i  \times v_i}$)]]
     21as well as the symmetry constraint
    2922
    30 [[latex($S' \approx S+MR \times V -  MR \times V - \sum{\Delta m_i r_i } \times V - R \times \sum{\Delta m_i v_i} + R \times \sum{\Delta m_i} V+\sum{\Delta m_i r_i  \times v_i}$)]]
     23[[latex($\displaystyle{\sum_{top}{dp^j_i}}+\displaystyle{\sum_{bottom}{dp^j_i}} = \mathbf{0}$)]]
    3124
    32 [[latex($S' \approx S +\sum{\Delta m_i \left (r_i - R \right )  \times \left (v_i - V \right )}$)]]
     25and directional constraint
    3326
    34 which implies our method is only accurate if $ V << v_i$ and $\sum{\Delta m_i} << M$
     27[[latex($\displaystyle{\sum_{top}{\mathbf{dp}_i}} \times \mathbf{S} = \mathbf{0}$)]]
     28
     29It is easier to solve the system if the magnitude constraint takes the form of
     30
     31[[latex($\displaystyle{\left | \sum_{top}{\mathbf{dp_i}}\right | }+\displaystyle{\left | \sum_{bottom}{\mathbf{dp}_i} \right | } = \gamma f \dot{M}\mathcal{V}_0$)]]
     32
     33where [[latex($\gamma$)]] is the analytic solution for the fraction of the scalar momentum in the z direction.
     34
     35
     36
     37If we introduce scaling parameters for the density and momentum for the top and bottom...
     38
     39[[latex($d \rho_\pm=\alpha_{\pm} d \rho$)]]
     40
     41
     42[[latex($d p^j_\pm=\beta^j_\pm d p^j $)]]
     43
     44and plug these into the above equations, we can solve for [[latex($\alpha_\pm$)]] and [[latex($\beta_\pm$)]]
     45
     46
     47[[latex($\alpha_\pm =  \frac{f \dot{M}}{2\displaystyle{\sum_\pm{d \rho}}}$)]]
     48
     49
     50The momentum equations give us 4 constraints for two variables. 
     51
     52For reference on another way astrobear has implemented sinks in the past, see SinkParticle