Changes between Version 27 and Version 28 of u/johannjc/scratchpad
- Timestamp:
- 05/10/15 12:26:00 (10 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad
v27 v28 1 [[latex($M'=M+\sum{\Delta m_i}$)]] 1 == Outflows == 2 Particles can launch outflows following the description in [http://arxiv.org/pdf/1406.3625.pdf Federrath et al 2014] 2 3 3 [[latex($M'V'=MV+\sum{\Delta m_i v_i}$)]] 4 The basic problem is to apply the following outflow function, but in a discrete way that is numerically symmetric and exact. 4 5 5 [[latex($V' = V \left ( \frac{1}{1+\epsilon} \right ) + $)]] 6 The change in rho has the following functional form 7 [[latex($d \rho=\rho_0 \mathcal{R}(r) \Theta(\theta)$)]] 6 8 7 [[latex($M'R' = M'R + \sum{\Delta m_i \left ( r_i - R \right )}=MR + \sum{\Delta m_i r_i }$)]] 9 as does the change in momentum 10 [[latex($d\mathbf{p}=d \rho \mathbf{\mathcal{V}}(\theta)$)]] 8 11 9 [[latex($S'=S+\sum{\Delta m_i \left ( r_i -R \right ) \times v_i}$)]] 12 Since we want the total mass to equal some fraction of the accreted mass, as well as the top and bottom mass injection to be symmetric, we must have 10 13 11 However, a better treatment is to conserve angular momentum. 12 13 [[latex($L=MR \times V$)]] 14 15 [[latex($J=L+S$)]] 16 17 [[latex($J'=J +\sum{\Delta m_i r_i \times v_i}$)]] 18 19 [[latex($S'=S + MR \times V - M'R' \times V' + \sum{\Delta m_i r_i \times v_i}$)]] 20 21 [[latex($S'=S + MR \times V - M'R' \times V' + \sum{\Delta m_i r_i \times v_i}$)]] 14 [[latex($\displaystyle{\sum_{top}{d \rho_i}}=\displaystyle{\sum_{bottom}{d \rho_ i}} = \frac{f \dot{M}}{2}$)]] 22 15 23 16 24 [[latex($S' = S+MR \times V - \left( MR + \sum{\Delta m_i r_i} \right ) \times \frac{MV + \sum{\Delta m_i v_i}}{M+\sum{m_i}}+\sum{\Delta m_i r_i \times v_i}$)]] 17 And since we also must have the total momentum be balanced, we need to have a magnitude constraint 25 18 26 which if we approximate to first order in $\frac{\sum{\Delta m_i}}{M}$ 19 [[latex($\displaystyle{\sum_{top}{|dp^j_i|}}+\displaystyle{\sum_{bottom}{|dp^j_i|}} = f \dot{M}\mathcal{V}_0$)]] 27 20 28 [[latex($S' \approx S+MR \times V - \left( MR + \sum{\Delta m_i r_i} \right ) \times \left ( V + \frac{\sum{\Delta m_i v_i}}{M} \right ) \left (1 -\frac{\sum{\Delta m_i}}{M} \right )+\sum{\Delta m_i r_i \times v_i}$)]] 21 as well as the symmetry constraint 29 22 30 [[latex($ S' \approx S+MR \times V - MR \times V - \sum{\Delta m_i r_i } \times V - R \times \sum{\Delta m_i v_i} + R \times \sum{\Delta m_i} V+\sum{\Delta m_i r_i \times v_i}$)]]23 [[latex($\displaystyle{\sum_{top}{dp^j_i}}+\displaystyle{\sum_{bottom}{dp^j_i}} = \mathbf{0}$)]] 31 24 32 [[latex($S' \approx S +\sum{\Delta m_i \left (r_i - R \right ) \times \left (v_i - V \right )}$)]] 25 and directional constraint 33 26 34 which implies our method is only accurate if $ V << v_i$ and $\sum{\Delta m_i} << M$ 27 [[latex($\displaystyle{\sum_{top}{\mathbf{dp}_i}} \times \mathbf{S} = \mathbf{0}$)]] 28 29 It is easier to solve the system if the magnitude constraint takes the form of 30 31 [[latex($\displaystyle{\left | \sum_{top}{\mathbf{dp_i}}\right | }+\displaystyle{\left | \sum_{bottom}{\mathbf{dp}_i} \right | } = \gamma f \dot{M}\mathcal{V}_0$)]] 32 33 where [[latex($\gamma$)]] is the analytic solution for the fraction of the scalar momentum in the z direction. 34 35 36 37 If we introduce scaling parameters for the density and momentum for the top and bottom... 38 39 [[latex($d \rho_\pm=\alpha_{\pm} d \rho$)]] 40 41 42 [[latex($d p^j_\pm=\beta^j_\pm d p^j $)]] 43 44 and plug these into the above equations, we can solve for [[latex($\alpha_\pm$)]] and [[latex($\beta_\pm$)]] 45 46 47 [[latex($\alpha_\pm = \frac{f \dot{M}}{2\displaystyle{\sum_\pm{d \rho}}}$)]] 48 49 50 The momentum equations give us 4 constraints for two variables. 51 52 For reference on another way astrobear has implemented sinks in the past, see SinkParticle