Changes between Version 25 and Version 26 of u/johannjc/scratchpad


Ignore:
Timestamp:
04/22/14 12:46:13 (11 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad

    v25 v26  
    7474 [[latex($\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left | 4 \pi B_0 - c\left(E_0+\partial_tE\Delta t\right ) \right | }$)]] which gives us a quadratic for [[latex($\Delta t$)]]
    7575
     76 [[latex($4 \Gamma \kappa_{0P} c \left | \partial_tE \right |  \Delta t^2 +  \left(4 \Gamma \kappa_{0P} \left | 4 \pi B_0 - cE_0 \right | \right ) \Delta t < \xi T_0 $)]]
    7677
    77  [[latex($-4 \Gamma \kappa_{0P} c \partial_tE \Delta t^2 +  \left(4 \Gamma \kappa_{0P} \left ( 4 \pi B_0 - cE_0 \right ) \right ) \Delta t - \xi T_0 < 0$)]]
     78where we have conservatively assumed that the diffusion always causes the gas to be more out of equilibrium.
    7879
    79  [[latex($4 \Gamma \kappa_{0P} c \partial_tE \Delta t^2 -  \left(4 \Gamma \kappa_{0P} \left ( 4 \pi B_0 - cE_0 \right ) \right ) \Delta t - \xi T_0 < 0$)]]
     80Now if we recognize that there are three time scales at play here:
    8081
    81 yucky...
     82|| Diffusion Time || [[latex($\tau_D=\frac{T}{4 \Gamma  \left | \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E \right | }$)]] ||
     83|| Coupling Time || [[latex($\tau_C=\frac{T}{ 4 \Gamma \kappa_{0P} \left |4 \pi B_0-cE \right |}$)]] ||
     84|| Absorption Time || [[latex($\tau_A=\frac{1}{c \kappa_{0P}}$)]] ||
    8285
    83 How about we assume that the gas is close to equilibrium?  Then we get
     86then this quadratic simplifies to
    8487
    85 [[latex($\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left | \partial_tE\Delta t \right | }$)]]
     88[[latex($\frac{\Delta t^2}{\tau_A\tau_D} + \frac{\Delta t}{\tau_C} < \xi$)]]
    8689
    87 [[latex($\Delta t < \sqrt{\xi \frac{T_0}{4 \Gamma \kappa_{0P} c \left | \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E \right |} }$)]] which is just the geometric average of the coupling time and the diffusion time
     90[[latex($\Delta t = \sqrt{\left ( \frac{\tau_A \tau_D}{2\tau_C}\right)^2+ \xi{\tau_D\tau_A}}-\frac{\tau_A \tau_D}{2\tau_C} $)]]
     91
     92[[latex($\Delta t = \frac{\tau_A \tau_D}{2\tau_C}  \left ( \sqrt{1+ \frac{4\xi \tau_C^2}{\tau_D\tau_A}} - 1 \right) $)]]
     93
     94
     95So we can choose
     96 * the diffusion time if we assume the gas and radiation are strongly coupled - optically thick,
     97 * the coupling time if we assume that the gas is optically thin (which should imply the radiation is fairly diffused)
     98 * Or we can solve the quadratic