Changes between Version 23 and Version 24 of u/johannjc/scratchpad


Ignore:
Timestamp:
04/22/14 09:18:49 (11 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad

    v23 v24  
    1010Now if
    1111
    12 [[latex($E=a_RT^4$)]]
     12[[latex($E=a_RT^4=a_R\left(\frac{e}{\rho c_v}\right)^4$)]]
    1313
    1414and
    1515
    16 [[latex($e=\rho c_v T$)]]
     16[[latex($e=\rho c_v T=\rho c_v \left(\frac{E}{a_R}\right)^{1/4}$)]]
    1717
    18 we can combine the gas and radiation diffusion equations to arrive at:
     18and we just consider the implicit terms, we can combine the gas and radiation diffusion equations to arrive at:
    1919
    20   [[latex($\frac{\partial \left (e+E\right) }{\partial t}+\nabla\cdot\left[\left(e+P\right)\mathbf{v}\right]=\color{red}{ \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E\right )}$)]]
     20  [[latex($\frac{\partial \left (e+E\right) }{\partial t}=\color{red}{ \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]]
     21
     22which simplifies to
     23
     24[[latex($\left(1+\frac{\rho c_v}{4 E}\left(\frac{E}{a_R}\right )^{1/4}\right) \frac{\partial E}{\partial t}= \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E$)]]
     25
     26
     27The second term in parenthesis represents the extra 'inertia' the radiation field has due to its coupling with the gas.  It is non-linear and this limits the time step that can be taken.
     28
     29[[latex($\Delta t \approx \frac{E}{\frac{\partial E}{\partial t}} = \frac{\left(E+\frac{\rho c_v}{4}\left(\frac{E}{a_R}\right )^{1/4}\right)}{\nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]]
     30
     31== Changes to the discretization ==
     32
     33