Changes between Version 1 and Version 2 of u/johannjc/scratchpad
- Timestamp:
- 07/03/13 18:18:35 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad
v1 v2 3 3 \[ \left [ 4 4 \begin{array}{c} 5 \dot{\rho} \\ 6 \dot{v} \\ 5 \partial_t{\rho_1} \\ 6 \partial_t{v_1} \\ 7 \partial_{xx}{\phi_1} \\ 7 8 \end{array} 8 9 \right ] 9 10 =\left [ 10 11 \begin{array}{c} 11 -\partial_x \left ( \rho v \right ) \\ 12 -v \partial_x v-c_s^2\partial_x \rho -\partial_x \phi \\ 12 -\rho_0\partial_x v_1 \\ 13 -\frac{c_s^2}{\rho_0}\partial_x \rho_1 -\partial_x \phi_1 \\ 14 4 \pi G \rho_1 13 15 \end{array} 14 16 \right ] = \left [ 17 \begin{array}{ccc} 18 0 & -\rho_0\partial_x & 0 \\ 19 -\frac{c_s^2}{\rho_0}\partial_x & 0 & -\partial_x \\ 20 4 \pi G & 0 & 0 21 \end{array} 22 \right ] 23 \left [ 15 24 \begin{array}{c} 16 -\partial_x \left ( \rho_0 v_0 \right ) \\ 17 -v_0 \partial_x v_0-c_s^2\partial_x \rho_0 -\partial_x \phi_0 \\ 25 \rho_1\\ 26 v_1 \\ 27 \phi_1 \\ 28 \end{array} 29 \right ] 30 \] 31 \[ 32 \partial_t 33 \left [ 34 \begin{array}{c} 35 \rho_1 \\ 36 v_1 \\ 37 \end{array} 38 \right ] 39 = 40 \left [ 41 \begin{array}{cc} 42 0 & -ik\rho_0 \\ 43 -ik\frac{c_s^2}{\rho_0} + \frac{4 \pi i G}{k} & 0 \\ 44 \end{array} 45 \right ] 46 \left [ 47 \begin{array}{c} 48 \rho_1\\ 49 v_1 \\ 50 \end{array} 51 \right ] 52 \] 53 54 which gives a characteristic equation 55 56 }}} 57 [[latex($\lambda^2 + k^2 c_s^2 -4 \pi G \rho_0 = 0$)]] 58 59 and we have 60 61 [[latex($\lambda = \pm \sqrt{4 \pi G \rho_0-k^2 c_s^2}$)]] 62 63 with eigen vectors 64 65 66 {{{ 67 #!latex 68 \[ 69 \left [ 70 \begin{array}{c} 71 k \rho_0 \\ 72 i \lambda 18 73 \end{array} 19 74 \right ] 20 75 \] 76 }}} 77 78 So for stable waves we have [[latex($\lambda = i\omega$)]] where [[latex($\omega$)]] is real. And there are two solutions... 79 80 {{{ 81 #!latex 21 82 \[ 22 +23 83 \left [ 24 84 \begin{array}{c} 25 -\partial_x \left ( \rho_1 v_0 \right ) - \partial_x \left ( \rho_0 v_1 \right )\\26 -v_0 \partial_x v_0-c_s^2\partial_x \rho_0 -\partial_x \phi_0\\85 \rho_1 \\ 86 v_1 \\ 27 87 \end{array} 28 \right ] 88 \right ] 89 = 90 \left [ 91 \begin{array}{c} 92 d\rho e^{\pm i \omega t} e^{i k x} \\ 93 dv e^{\pm i \omega t} e^{i k x} \\ 94 \end{array} 95 \right ] 29 96 \] 30 97 }}} 98 where 99 100 {{{ 101 #!latex 102 $dv = -\frac{\omega}{k}\frac{d\rho}{\rho}$ 103 }}} 104 105 So if [[latex($\lambda=\omega$)]] where [[latex($\omega$)]] is real - then we have two solutions as well. 106 107 {{{ 108 #!latex 109 \[ 110 \left [ 111 \begin{array}{c} 112 \rho_1 \\ 113 v_1 \\ 114 \end{array} 115 \right ] 116 = 117 \left [ 118 \begin{array}{c} 119 d\rho e^{\pm \omega t} e^{i k x} \\ 120 dv e^{\pm \omega t} e^{i k x + i \pi} \\ 121 \end{array} 122 \right ] 123 \] 124 }}} 125