| 80 | | $A \left ( \partial_i B_{ij} \right ) \left ( C_\lambda \partial_j T^{\lambda + 1} + D_\lambda \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C_\lambda \partial_i \partial_j T^{\lambda + 1} + D_\lambda \partial_i \partial_j T^{\lambda} T' \right ) $ |
| | 80 | $A \left ( \partial_i B_{ij} \right ) \left ( C \partial_j T^{\lambda + 1} + D \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C \partial_i \partial_j T^{\lambda + 1} + D \partial_i \partial_j T^{\lambda} T' \right ) $ |
| | 81 | |
| | 82 | and the whole equation is then |
| | 83 | |
| | 84 | $\partial_t T = \displaystyle \sum_{\parallel,\perp}{A \left ( \partial_i B_{ij} \right ) \left ( C \partial_j T^{\lambda + 1} + D \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C \partial_i \partial_j T^{\lambda + 1} + D \partial_i \partial_j T^{\lambda} T' \right )} $ |
| | 85 | |
| | 86 | where $A$, $B$, $C$, $D$, and $\lambda$ are functions of $\perp,\parallel$ |
| | 87 | |
| | 88 | We can also write this as |
| | 89 | |
| | 90 | $\partial_t T = \displaystyle \sum_{\parallel,\perp}{E \partial_j T^{\lambda + 1} + F \partial_j T^{\lambda} T' + G \partial_i \partial_j T^{\lambda + 1} + H \partial_i \partial_j T^{\lambda} T'} $ |
| | 91 | |
| | 92 | where |
| | 93 | |
| | 94 | $E = A \left ( \partial_i B_{ij} \right ) C$ |
| | 95 | |
| | 96 | $F = A \left ( \partial_i B_{ij} \right ) D$ |
| | 97 | |
| | 98 | $G = A B_{ij} C$ |
| | 99 | |
| | 100 | $H = A B_{ij} D$ |
| 83 | | |
| 84 | | |
| 85 | | Let's first just consider the $\chi_\parallel$ term. |
| 86 | | |
| 87 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \kappa_\parallel T^\lambda \left ( \hat{b} \cdot \nabla T \right )\right ]$ |
| 88 | | |
| 89 | | We need a way to write this implicitly but we need it to also be linear in $T_{*}$ |
| 90 | | |
| 91 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \kappa_\parallel T_{*}^\lambda \left ( \hat{b} \cdot \nabla T_{*} \right )\right ]$ |
| 92 | | |
| 93 | | We could Taylor expand $T^\lambda_{*}=T^\lambda + \lambda T^{\lambda-1} \left ( T_{*}-T \right ) = \left ( 1-\lambda \right ) T^\lambda + \lambda T^{\lambda-1} T_{*}$ |
| 94 | | |
| 95 | | but then we would still have a non-linear term like $\lambda T^{\lambda-1} T_{*} \nabla T_{*}$ |
| 96 | | |
| 97 | | We could write this as $\lambda T^{\lambda-1} 1/2 \nabla T_{*}^2$ and Taylor expand again to get $\lambda T^{\lambda-1} 1/2 \nabla \left ( - T + 2 TT_{*} \right )$ |
| 98 | | |
| 99 | | but we've now done a Taylor expansion on a Taylor expansion... |
| 100 | | |
| 101 | | |
| 102 | | Alternatively, we can rewrite the diffusion equation |
| 103 | | |
| 104 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{\kappa_\parallel}{\lambda+1} \left ( \hat{b} \cdot \nabla T_*^{\lambda+1} \right )\right ]$ |
| 105 | | |
| 106 | | |
| 107 | | |
| 108 | | and then perform a single Taylor expansion |
| 109 | | |
| 110 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{\kappa_\parallel}{\lambda+1} \left ( \hat{b} \cdot \nabla \left (-\lambda T^{\lambda+1} + \left ( \lambda + 1 \right ) T^{\lambda}T_{*} \right ) \right ) \right ]$ |
| 111 | | |
| 112 | | Switching to Einstein notation, we have |
| 113 | | |
| 114 | | $\partial_t T = \frac{\kappa_\parallel}{\lambda+1} \partial_i n b_i b_j \partial j \left ( -\lambda T^{\lambda+1} + \left ( \lambda + 1 \right ) T^{\lambda}T_{*} \right ) $ |
| 115 | | |
| 116 | | $\partial_t T = \frac{\kappa_\parallel}{\lambda+1} \partial_i n b_i b_j \partial j \left ( -\lambda T^{\lambda+1} + \left ( \lambda + 1 \right ) T^{\lambda}T_{*} \right ) $ |
| 117 | | |
| 118 | | Let's also take a moment to write $T_* = \phi T + \psi T'$ where $T'$ is the new temperature, and $\phi + \psi = 1$. Backward Euler would have $\phi=0$ and $\psi=1$ where Crank-Nicholson would have $\phi=\psi=1/2$ |
| 119 | | |
| 120 | | $\partial_t T = \frac{\kappa_\parallel}{\lambda+1} \partial_i n b_i b_j \partial j \left ( -\lambda T^{\lambda+1} + \left ( \lambda + 1 \right ) T^{\lambda}\left ( \phi T + \psi T' \right ) \right ) $ |
| 121 | | |
| 122 | | |
| 123 | | $\partial_t T = \frac{\kappa_\parallel}{\lambda+1} \partial_i n b_i b_j \partial j \left ( \left ( \phi - \psi \lambda \right ) T^{\lambda+1} + \psi \left ( \lambda + 1 \right ) T^{\lambda} T' \right ) $ |
| 124 | | |
| 125 | | |
| 126 | | $\partial_t T = \frac{\kappa_\parallel}{\lambda+1} \left [ \left ( \partial_i n b_i b_j \right ) \partial j \left ( \left ( \phi - \psi \lambda \right ) T^{\lambda+1} + \psi \left ( \lambda + 1 \right ) T^{\lambda} T' \right ) + n b_i b_j \left ( \left ( \phi - \psi \lambda \right ) \partial_i \partial_j T^{\lambda+1} + \psi \left ( \lambda + 1 \right ) \partial_i \partial_j T^{\lambda} T' \right ) \right ]$ |
| 127 | | |
| 128 | | |
| 129 | | Now if we write the equation as |
| 130 | | |
| 131 | | $\partial_t T = B_j \partial_j T^{\lambda+1} + C_j \partial_j T^\lambda T' + D_{ij} \partial_i\partial_j T^{\lambda+1} + E_{ij} \partial_i \partial_j T^\lambda T'$ |
| 132 | | |
| 133 | | we get expressions for |
| 134 | | |
| 135 | | $\phi' = \frac{\left ( \phi-\psi\lambda \right )}{\psi \left (\lambda+1 \right )} $ |
| 136 | | |
| 137 | | $B_j = \phi' C_j $ |
| 138 | | |
| 139 | | $C_j = \kappa_\parallel \psi \partial_i n b_i b_j $ |
| 140 | | |
| 141 | | $D_{ij}=\phi'E_{ij}$ |
| 142 | | |
| 143 | | $E_{ij} = \kappa_\parallel \psi n b_i b_j $ |