Changes between Version 4 and Version 5 of u/johannjc/scratchpad22


Ignore:
Timestamp:
01/12/17 14:29:46 (8 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad22

    v4 v5  
    6565$e_{c,\Gamma} = \frac{\sigma}{\sigma_c} N_s \frac{F}{F_c}\frac{T_s}{E_s} = \frac{N_s}{E_s}$
    6666
     67== Recombination Cooling ==
     68In physical units we have
    6769
     70$\frac{dE}{dt}=\Lambda kT T^{-.89} n_e n_{H+}$
    6871
     72and in computational units we have
     73
     74$\frac{dE_c}{dt_c}=\Lambda_c T T^{-.89} n_{c,e} n_{c,H+}$
     75
     76and dividing the two gives us
     77
     78$\Lambda_c = \Lambda \frac{k N_s^2 T_s}{E_s}$
     79
     80== Lyman Alpha Cooling ==
     81
     82In physical units we have
     83
     84$\frac{dE}{dt}=\Lambda e^{-118348 K/T} n_e n_{H}$
     85
     86and in computational units we have
     87
     88$\frac{dE_c}{dt_c}=\Lambda_c e^{-118348 K/T} n_{c,e} n_{c,H}$
     89
     90and dividing the two gives us
     91
     92$\Lambda_c = \Lambda \frac{N_s^2 T_s}{E_s}$
    6993
    7094== Test problem ==
     
    76100$R_c=1.5\times 10^{10} cm$
    77101
    78 $F=2\times 10^{14} cm^{-2} s^{-1}$
     102$F=2\times 10^{13} cm^{-2} s^{-1}$
    79103
    80104$T= 10^3 K$
    81105
     106
    82107embedded in a lower density pressure balanced ambient with a density ratio
    83108
    84 $\chi=1000$
     109$\chi=100$
    85110
    86 
    87 With a cross section for photo-ionization of 6.3e-18 and our clump's column density of 9e18, we would expect the clump to be optically thick
     111With a cross section for photo-ionization of 6.3e-18 and our clump's column density of 9e18, we would expect the tau=1 surface to be 5% of the way in towards the clump center.
    88112
    89113And with a flux of 2e13, we would expect photo-ionization of the column to take 5 days or so...