Changes between Version 4 and Version 5 of u/johannjc/scratchpad22
- Timestamp:
- 01/12/17 14:29:46 (8 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad22
v4 v5 65 65 $e_{c,\Gamma} = \frac{\sigma}{\sigma_c} N_s \frac{F}{F_c}\frac{T_s}{E_s} = \frac{N_s}{E_s}$ 66 66 67 == Recombination Cooling == 68 In physical units we have 67 69 70 $\frac{dE}{dt}=\Lambda kT T^{-.89} n_e n_{H+}$ 68 71 72 and in computational units we have 73 74 $\frac{dE_c}{dt_c}=\Lambda_c T T^{-.89} n_{c,e} n_{c,H+}$ 75 76 and dividing the two gives us 77 78 $\Lambda_c = \Lambda \frac{k N_s^2 T_s}{E_s}$ 79 80 == Lyman Alpha Cooling == 81 82 In physical units we have 83 84 $\frac{dE}{dt}=\Lambda e^{-118348 K/T} n_e n_{H}$ 85 86 and in computational units we have 87 88 $\frac{dE_c}{dt_c}=\Lambda_c e^{-118348 K/T} n_{c,e} n_{c,H}$ 89 90 and dividing the two gives us 91 92 $\Lambda_c = \Lambda \frac{N_s^2 T_s}{E_s}$ 69 93 70 94 == Test problem == … … 76 100 $R_c=1.5\times 10^{10} cm$ 77 101 78 $F=2\times 10^{1 4} cm^{-2} s^{-1}$102 $F=2\times 10^{13} cm^{-2} s^{-1}$ 79 103 80 104 $T= 10^3 K$ 81 105 106 82 107 embedded in a lower density pressure balanced ambient with a density ratio 83 108 84 $\chi=100 0$109 $\chi=100$ 85 110 86 87 With a cross section for photo-ionization of 6.3e-18 and our clump's column density of 9e18, we would expect the clump to be optically thick 111 With a cross section for photo-ionization of 6.3e-18 and our clump's column density of 9e18, we would expect the tau=1 surface to be 5% of the way in towards the clump center. 88 112 89 113 And with a flux of 2e13, we would expect photo-ionization of the column to take 5 days or so...