Changes between Version 3 and Version 4 of u/johannjc/scratchpad22


Ignore:
Timestamp:
01/12/17 13:39:26 (8 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad22

    v3 v4  
    1 == Scaling ==
     1= Scaling =
    22
    3 The equations in physical units look like
     3== Cross section ==
     4The equations for calculating the optical depth in physical units look like
    45
    56$d\tau = n \sigma dl$
    6 
    7 $\frac{dn}{dt} = n \sigma F$
    87
    98And in computational units
     
    1110$d\tau = n_c \sigma_c dl_c$
    1211
    13 $\frac{dn_c}{dt_c} = n_c \sigma_c F_c$
     12Dividing the first equation by the second gives
    1413
    15 Dividing the first equation gives $n_c \sigma_c dl_c = n \sigma dl = n_c N_s \sigma dl_c L_s$
     14$n_c \sigma_c dl_c = n \sigma dl = n_c N_s \sigma dl_c L_s$
    1615
    1716where $N_s$ and $L_s$ are the number density and length scales in the code.
     
    2120$\sigma_c = \sigma N_s L_s$
    2221
    23 And dividing the second equation by the first, gives
     22== Ionizing Flux ==
     23The equation for calculating the ionization rate in physical units is
     24
     25$\frac{dn}{dt} = n \sigma F$
     26
     27and in computational units
     28
     29$\frac{dn_c}{dt_c} = n_c \sigma_c F_c$
     30
     31
     32Dividing the first equation by the second, gives
    2433
    2534$N_s/T_s = N_s \frac{1}{N_s L_s} \frac{F}{F_c}$
     
    2837
    2938$F_c=F \frac{T_s}{L_s N_s}$
     39
     40== Recombination Rate ==
     41
     42The equation for recombination in physical units is
     43
     44$\frac{d n}{dt} = \alpha n_{HII} n_e$
     45
     46and in computational units
     47
     48$\frac{d n_c}{dt} = \alpha_c n_{c,HII} n_{c,e}$
     49
     50Dividing the two and solving for $\alpha_c$ gives
     51
     52$\alpha_c = \alpha  \frac{T_s}{N_s}$
     53
     54== Ionization Heating ==
     55The equation in physical units is
     56
     57$\frac{dE}{dt}=e_\Gamma \sigma n F$
     58
     59and in computational units
     60
     61$\frac{dE_c}{dt_c}=e_{c,\Gamma} \sigma_c n_c F_c$
     62
     63Dividing the two and solving for $e_{c,\Gamma}$ gives
     64
     65$e_{c,\Gamma} = \frac{\sigma}{\sigma_c} N_s \frac{F}{F_c}\frac{T_s}{E_s} = \frac{N_s}{E_s}$
     66
    3067
    3168