10 | | || '''ke(r)''' || '''Distance (pc)''' || '''Error (%)'''|| |
11 | | || 10*freefall || 6.8x10^-7^ || 30 || |
12 | | || 100*freefall || 7.4x10^-6^ || 30 || |
13 | | || 1000*freefall || 7.5x10^-5^ || 30 || |
14 | | || 10*freefall || .00002 || .01 || |
15 | | || 100*freefall || .0002 || .01 || |
16 | | || 1000*freefall || .002 || .01 || |
| 12 | |
| 13 | || '''ke(r)''' || '''Error (%)''' || '''Distance (pc)'''|| |
| 14 | || 10*freefall || 30 || 6.8x10^-7^ || |
| 15 | || 10*freefall || .01 || .00002 || |
| 16 | || 100*freefall || 30 || 7.4x10^-6^ || |
| 17 | || 100*freefall || .01 || .0002 || |
| 18 | || 1000*freefall || 30 || 7.5x10^-5^ || |
| 19 | || 1000*freefall || .01 || .002 || |
| 20 | |
| 21 | |
| 22 | Now, what if a gas parcel started from rest, a distance r away from the star surface? Now we are solving, |
| 23 | |
| 24 | [[latex($-\frac{G*M}{r}+\frac{G*M}{R} = .99 (\frac{GM}{R})$)]] |
| 25 | |
| 26 | [[latex($-\frac{G*M}{r}+\frac{G*M}{R} = .70 (\frac{GM}{R})$)]] |
| 27 | |
| 28 | || '''ke(r)''' || '''Error (%)''' || '''Distance (pc)'''|| |
| 29 | || 0 || .01 || 2.2x10^-6^ || |
| 30 | || 0 || 30 || 7.5x10^-8^ || |
| 31 | |
| 32 | |
| 33 | Lastly, what if the parcel was moving, however, it was moving ''slower'' than freefall? Now ke(r) will be a fraction of the freefall energy in the table below. In particular, what if ke(r) was 1/2, 1/5, 1/10 the freefall kinetic energy... at what distance, r, would I see a 0.01% error? What about a 30% error? |
| 34 | |
| 35 | [[latex($ke(r)-\frac{G*M}{r}+\frac{G*M}{R} = .99 (\frac{GM}{R})$)]] |
| 36 | |
| 37 | [[latex($ke(r)-\frac{G*M}{r}+\frac{G*M}{R} = .70 (\frac{GM}{R})$)]] |
| 38 | |