195 | | [[latex($t_{diff}\approx \frac{L^2}{c}\frac{\kappa_R \rho}{\lambda}$)]] |
196 | | |
197 | | [[latex($t_{diff}\approx $)]] |
| 195 | [[latex($t_{diff}\approx \frac{r^2}{c}\frac{\kappa_R \rho}{\lambda}$)]] |
| 196 | |
| 197 | Note this can be rewritten as, |
| 198 | |
| 199 | [[latex($t_{diff}\approx \frac{r}{c}\frac{r}{l}\lambda^{-1}$)]] |
| 200 | |
| 201 | The first factor is the light-crossing time: |
| 202 | |
| 203 | [[latex($t_{light} = \frac{r}{c} = 8 ~days $)]] |
| 204 | |
| 205 | The second factor is the ratio of the box radius to the mean free path. We set this to = 1 in our derivation above: |
| 206 | |
| 207 | [[latex($\frac{r}{l} = 1$)]] |
| 208 | |
| 209 | And the last factor is inverse lambda. Again, we constrained this in our derivation: |
| 210 | |
| 211 | [[latex($\lambda^{-l} \approx 3$)]] |
| 212 | |
| 213 | Taken together, in the '''optically thick limit, when r=l''': |
| 214 | |
| 215 | [[latex($t_{diff}\approx 3~ t_{light}$)]] |
| 216 | |
| 217 | So for a simulation with these parameters, expect a diffusion wave to cross the grid in '''24 days''': |
| 218 | |
| 219 | [[latex($\boxed{t_{diff}\approx 24 ~days}$)]] |
| 220 | |