Changes between Version 1 and Version 2 of u/bliu/AblativeRT/HybridEquations


Ignore:
Timestamp:
06/05/15 12:24:21 (10 years ago)
Author:
Baowei Liu
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/bliu/AblativeRT/HybridEquations

    v1 v2  
    1 The current version of the code has changed the temperature from computational units to Kelvin or solves the energy equation instead of temperature. This note is to check the parameter and equations changes need to do to be consistent comparing the old ways of [https://astrobear.pas.rochester.edu/trac/wiki/u/bliu/AblativeRT/TempEquations thermal diffusion equation in Astrobear]. So lhs of the equation was replaced by the derivative of the energy.
     1This try is to change the temperature from computational units to Kelvin or solves the energy equation instead of temperature. This note is to check the parameter and equations changes need to do to be consistent comparing the old way of [https://astrobear.pas.rochester.edu/trac/wiki/u/bliu/AblativeRT/TempEquations thermal diffusion equation in AstroBEAR since the old way works. This way all the parameters would be same as [https://astrobear.pas.rochester.edu/trac/wiki/u/bliu/AblativeRT/TempEquations  the old way]. Only lhs of the equation was replaced by the derivative of the energy getdEdT.
     2
     3== 1. Equations and Parameters==
     4Equation solved in Betti's code (SI units and Temperature in Joules)
     5
     6$$\rho C^{\prime}_{v}\frac{\partial K_{B}T}{\partial t}=\frac{\partial}{\partial x}\left[\kappa_{0}(K_{B}T)^{n}\frac{\partial (K_{B}T)}{\partial x}\right]$$
     7where $K_{B}$ is Boltzmann constant and $C^{\prime}_{v}=C_{v}/K_{B}$ as in [http://www.pas.rochester.edu/~bliu/AblativeRT/Docs/RBetti.pdf Betti's document] and $C_{v}$ is the normal specific heat capacity.
     8And the flux is
     9$$q_{0}=\kappa_{0}(K_{B}T)^{n}\frac{\partial (K_{B}T)}{\partial x_{SI}}$$
     10
     11To convert this to cgs units we write
     12
     13$$10^{3}\rho_{cgs}\frac{\partial T}{\partial t}=\frac{\kappa_{0}K_{B}^{n}}{C^{\prime}_{v}}\frac{\partial}{10^{-2}\partial x_{cgs}}\left[T^{n}\frac{\partial T}{10^{-2}\partial x_{cgs}}\right]$$
     14
     15That is
     16
     17$$\frac{1}{\gamma-1}\rho_{cgs}\frac{\partial T}{\partial t}=\frac{10\kappa_{0}K_{B}^{n}}{(\gamma-1)C^{\prime}_{v}}\frac{\partial}{\partial x_{cgs}}\left[T^{n}\frac{\partial T}{\partial x_{cgs}}\right]$$
     18
     19Put the equation in c.u., it will be
     20
     21$$\frac{1}{\gamma-1}\rho\frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left[\kappa1 T^{n}\frac{\partial T}{\partial x_{cgs}}\right]$$
     22
     23and the lhs is in c.u. of energy
     24
     25And the definition of $\kappa_{1}$ and $q^{*}_{cgs}$ would be same.
     26
     27$$\kappa_{1}=\frac{10\kappa_{0}K_{B}^{n}}{(\gamma-1)C^{\prime}_{v}}$$
     28and
     29$$q^{*}_{cgs}=\kappa_{1}T^{n}\frac{\partial T}{\partial x_{cgs}} $$
     30
     31Comparing the definition of $q_{0}$ and $q^{*}_{cgs}$ we have $$ q_{0}=10(\gamma-1)q^{*}_{cgs}C^{\prime}_{v}K_{B}$$
     32
     33In [http://www.pas.rochester.edu/~bliu/AblativeRT/Docs/RBetti.pdf  Betti's data], $C^{\prime}_{v}=7.816e26$ and $\gamma=5/3$ so
     34$$q_{0}=\frac{2}{3}*7.816*1.38*10^{4}*q^{*}_{cgs}$$
     35
    236
    3372. Scales for converting from cgs to cu