10 | | Here |
11 | | $$\kappa_{1}=\frac{10\kappa_{0}K_{B}^{n}}{(\gamma-1)}$$ |
12 | | In current version of AstroBEAR, we have |
13 | | $$\frac{\partial E}{\partial T}\frac{\partial T}{\partial t}=\frac{10\kappa_{0}K_{B}^{n}}{(\gamma-1)C_{v}}\frac{\partial}{\partial x_{cgs}}\left[T^{n}\frac{\partial T}{\partial x_{cgs}}\right]$$ |
| 10 | In order to find the relationship between $\kappa_{1}$ and $\kappa_{0}$ in [http://www.pas.rochester.edu/~bliu/AblativeRT/Docs/RBetti.pdf Betti's document], we have to rewrite the first equation in wiki:TempEquations to make temperature as in Kelvin instead of $K_{B}T$ which is in Joule: |
| 11 | $$C_{v}\rho_{SI}\frac{\partial T}{\partial t}=\frac{\partial}{\partial x_{SI}}\left[\kappa_{0}K_{B}^{n+1}T^{n}\frac{\partial T}{\partial x_{SI}}\right]$$ |
| 12 | |
| 13 | where $C_{v}$ is in unit of '''Joule per kg per kelvin'''. |
| 14 | and |
| 15 | $$ q_{0}=\kappa_{0}(K_{B}T)^{n}\frac{\partial K_{B}T}{\partial x_{SI}} $$ |
| 16 | |
| 17 | or |
| 18 | $$ q_{0}=10^{2}\kappa_{0}(K_{B}T)^{n+1}\frac{\partial T}{\partial x_{cgs}} $$ |
| 19 | |
| 20 | By converting everything but the Boltzmann constant in the above equation to cgs units we have |
| 21 | |
| 22 | $$10^{3}10^{-4}C_{v}\rho_{cgs}\frac{\partial T}{\partial t}=\frac{\partial}{\partial 10^{-2}x_{cgs}}\left[\kappa_{0}K_{B}^{n+1}T^{n}\frac{\partial T}{\partial 10^{-2}x_{cgs}}\right]$$ |
| 23 | Here |
| 24 | or |
| 25 | $$C_{v}\rho_{cgs}\frac{\partial T}{\partial t}=\frac{\partial}{\partial x_{cgs}}\left[\kappa_{0}10^{5}K_{B}^{n+1}T^{n}\frac{\partial T}{\partial x_{cgs}}\right]$$ |
| 26 | |
| 27 | where $C_{v}$ is in unit of '''erg per g per kelvin''' and 1 '''erg per g per kelvin''' = $10^{-4}$ '''Joule per kg per kelvin''' |
| 28 | |
| 29 | So the $\kappa_{1}$ in the new version of the code should be. |
| 30 | $$\kappa_{1}=10^{5}\kappa_{0}K_{B}^{n+1}$$ |
| 31 | and $K_{B}$ is in SI unit? |
| 32 | |
| 33 | And since we use the subroutine getdEdT to get the energy derivative so |
| 34 | $$\frac{\partial E}{\partial T}\frac{\partial T}{\partial t}=\frac{\partial}{\partial x_{cgs}}\left[\kappa_{1}T^{n}\frac{\partial T}{\partial x_{cgs}}\right]$$ |