Changes between Version 1 and Version 2 of u/JCMar2212
- Timestamp:
- 03/21/12 15:02:23 (13 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/JCMar2212
v1 v2 2 2 3 3 = The Star Formation Rate of Supersonic MHD Turbulence (Padoan and Nordlund 2011) = 4 Attempt to determine [[latex($SFR(\alpha_{vir}, M_S, \beta)$)]] for isothermal self-gravitating MHD turbulence. 5 4 6 [[Image(JCMar1.png)]] 5 7 6 Attempt to determine [[latex($SFR(\alpha_{vir}, M_S, \beta)$)]] for isothermal self-gravitating MHD turbulence. 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 == The Model == 54 7 55 8 56 === Post shock density === … … 11 59 and if [[latex($v_l \propto l^{1/2}$)]] then 12 60 [[latex($\rho_l \propto l$)]] 61 62 63 64 13 65 14 66 === Shock thickness === … … 24 76 So flows on all scales will produce shocks of the same thickness, but the post shock densities will increase with scale. 25 77 78 79 80 81 82 83 26 84 === Shock instability === 27 85 If [[latex($\lambda_{HD} > \lambda_J(\rho_{cr,HD})$)]] then the shocked layer will be unstable to collapse so we can define a critical density based on the shock layer thickness … … 35 93 [[Image(JCMar3.png)]] 36 94 37 We can calculate the amount of gas above the critical density [[latex($M_{>\rho_{cr}} = \displaystyle \int_{x_{cr}}^\infty {x p(x) dx}$)]] and the characteristic time for that mass to form stars as [[latex($\tau_{ff,cr}$)]] with some efficiency [[latex($\epsilon$)]] giving a star formation rate of [[latex($\epsilon \frac{M_{\rho_{>cr}}}{\tau_{ff,cr}}$)]] or the standard "star formation rate per free fall time" [[latex($SFR_{ff}=\epsilon \frac{\tau_{ff,0}}{\tau_{ff,cr}} M_{\rho_{>cr}}$)]]38 39 40 95 41 96 42 97 43 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 We can calculate the amount of gas above the critical density [[latex($M_{>\rho_{cr}} = \displaystyle \int_{x_{cr}}^\infty {x p(x) dx}$)]] and the characteristic time for that mass to form stars as [[latex($\tau_{ff,cr}$)]] with some efficiency [[latex($\epsilon$)]] giving a star formation rate of [[latex($\epsilon \frac{M_{\rho_{>cr}}}{\tau_{ff,cr}}$)]] or the standard "star formation rate per free fall time" [[latex($SFR_{ff}=\epsilon \frac{\tau_{ff,0}}{\tau_{ff,cr}} M_{\rho_{>cr}}$)]] 136 137 They assumed that in the hydro case [[latex($\epsilon \approx 1$)]] 138 139 === MHD? === 140 For MHD a similar analysis can be carried out although the post shock [[latex($\beta$)]] must be measured. The main modification is that the post shock magnetic pressure must also be taken into account. 141 142 == The setups == 143 144 [[Image(JCMar2.png)]] 145 146 147 == The results == 148 149 [[Image(JCMar4.png)]] 150 151 ---- 152 153 [[Image(JCMar5.png)]] 154 155 ---- 156 157 [[Image(JCMar6.png)]] 158