Changes between Version 1 and Version 2 of u/JCMar2212


Ignore:
Timestamp:
03/21/12 15:02:23 (13 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/JCMar2212

    v1 v2  
    22
    33= The Star Formation Rate of Supersonic MHD Turbulence (Padoan and Nordlund 2011) =
     4Attempt to determine [[latex($SFR(\alpha_{vir}, M_S, \beta)$)]] for isothermal self-gravitating MHD turbulence.
     5
    46[[Image(JCMar1.png)]]
    57
    6 Attempt to determine [[latex($SFR(\alpha_{vir}, M_S, \beta)$)]] for isothermal self-gravitating MHD turbulence.
     8
     9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53== The Model ==
     54
    755
    856=== Post shock density ===
     
    1159 and if [[latex($v_l \propto l^{1/2}$)]] then
    1260  [[latex($\rho_l \propto l$)]]
     61
     62
     63
     64
    1365
    1466=== Shock thickness ===
     
    2476 So flows on all scales will produce shocks of the same thickness, but the post shock densities will increase with scale.
    2577
     78
     79
     80
     81
     82
     83
    2684=== Shock instability ===
    2785 If [[latex($\lambda_{HD} > \lambda_J(\rho_{cr,HD})$)]] then the shocked layer will be unstable to collapse so we can define a critical density based on the shock layer thickness
     
    3593 [[Image(JCMar3.png)]]
    3694
    37  We can calculate the amount of gas above the critical density [[latex($M_{>\rho_{cr}} = \displaystyle \int_{x_{cr}}^\infty {x p(x) dx}$)]] and the characteristic time for that mass to form stars as [[latex($\tau_{ff,cr}$)]] with some efficiency [[latex($\epsilon$)]] giving a star formation rate of [[latex($\epsilon \frac{M_{\rho_{>cr}}}{\tau_{ff,cr}}$)]] or the standard "star formation rate per free fall time" [[latex($SFR_{ff}=\epsilon \frac{\tau_{ff,0}}{\tau_{ff,cr}} M_{\rho_{>cr}}$)]]
    38 
    39  
    4095
    4196
    4297
    4398
     99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135 We can calculate the amount of gas above the critical density [[latex($M_{>\rho_{cr}} = \displaystyle \int_{x_{cr}}^\infty {x p(x) dx}$)]] and the characteristic time for that mass to form stars as [[latex($\tau_{ff,cr}$)]] with some efficiency [[latex($\epsilon$)]] giving a star formation rate of [[latex($\epsilon \frac{M_{\rho_{>cr}}}{\tau_{ff,cr}}$)]] or the standard "star formation rate per free fall time" [[latex($SFR_{ff}=\epsilon \frac{\tau_{ff,0}}{\tau_{ff,cr}} M_{\rho_{>cr}}$)]]
     136
     137 They assumed that in the hydro case [[latex($\epsilon \approx 1$)]]
     138
     139=== MHD? ===
     140  For MHD a similar analysis can be carried out although the post shock [[latex($\beta$)]] must be measured.  The main modification is that the post shock magnetic pressure must also be taken into account. 
     141
     142== The setups ==
     143
     144[[Image(JCMar2.png)]]
     145
     146
     147== The results ==
     148
     149[[Image(JCMar4.png)]]
     150
     151----
     152
     153[[Image(JCMar5.png)]]
     154
     155----
     156
     157[[Image(JCMar6.png)]]
     158