Changes between Version 10 and Version 11 of u/JCFeb0713


Ignore:
Timestamp:
07/10/13 11:52:32 (12 years ago)
Author:
trac
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/JCFeb0713

    v10 v11  
    1919From the canonical partition function
    2020
    21 [[latex(Z(T,F)=\int dE dx \Omega(E,x) e^{-\left(E+Fx)/k_BT\right)})]]
     21[[latex($Z(T,F)=\int dE dx \Omega(E,x) e^{-\left(E+Fx)/k_BT\right)}$)]]
    2222
    2323we can derive
    2424
    25 [[latex(F=T\frac{\partial S}{\partial x})]]
     25[[latex($F=T\frac{\partial S}{\partial x}$)]]
    2626
    2727which for polymers gives Hooke's law
    2828
    29 [[latex(F = -C T x)]]
     29[[latex($F = -C T x$)]]
    3030
    3131
     
    3535[http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.cmp/1103858973 Bardeen, Cater, and Hawking 1973]
    3636
    37 || [[latex(M)]] || black hole mass ||
    38 || [[latex(A)]] || black hole surface area ||
    39 || [[latex(g)]] || black hole surface gravity ||
    40 || [[latex(\Omega)]] || horizon angular velocity ||
    41 || [[latex(J)]] || black hole angular momentum ||
    42 || [[latex(\phi)]] || electric potential ||
    43 || [[latex(Q)]] || electric charge ||
     37|| [[latex($M$)]] || black hole mass ||
     38|| [[latex($A$)]] || black hole surface area ||
     39|| [[latex($g$)]] || black hole surface gravity ||
     40|| [[latex($\Omega$)]] || horizon angular velocity ||
     41|| [[latex($J$)]] || black hole angular momentum ||
     42|| [[latex($\phi$)]] || electric potential ||
     43|| [[latex($Q$)]] || electric charge ||
    4444
    4545Correspondence between Temperature and Entropy with surface gravity and area
    46 || Zeroth Law || [[latex(g)]] constant over horizon for stationary black hole || [[latex(T)]] is constant for a body in thermal equilibrium ||
    47 || First Law || [[latex(d M=\frac{g}{8\pi}dA+\Omega dJ+\phi dQ)]] || [[latex(dU = TdS - pdV + \mu dN)]] ||
    48 || Second Law || [[latex(\delta A >= 0)]] || [[latex(dS >= 0)]] ||
    49 || Third Law || [[latex(g > 0)]] || [[latex(T > 0)]] ||
     46|| Zeroth Law || [[latex($g$)]] constant over horizon for stationary black hole || [[latex($T$)]] is constant for a body in thermal equilibrium ||
     47|| First Law || [[latex($d M=\frac{g}{8\pi}dA+\Omega dJ+\phi dQ$)]] || [[latex($dU = TdS - pdV + \mu dN$)]] ||
     48|| Second Law || [[latex($\delta A >= 0$)]] || [[latex($dS >= 0$)]] ||
     49|| Third Law || [[latex($g > 0$)]] || [[latex($T > 0$)]] ||
    5050
    5151Black hole 'entropy' should be proportional to area.  Dimensional analysis gives:
    5252
    53 [[latex(S_{BH} = \frac{k_B A}{4 l_p^2})]]
     53[[latex($S_{BH} = \frac{k_B A}{4 l_p^2}$)]]
    5454
    5555where
    5656
    57 [[latex(l_p=\sqrt{G\hbar/c^3})]]
     57[[latex($l_p=\sqrt{G\hbar/c^3}$)]]
    5858
    5959and S,,BH,, stands for Bekenstein-Hawking entropy (not Black Hole).
     
    6464When lowering a particle into a black hole, information about the particle is lost, so entropy of black hole should increase.  This corresponds to an minimal increase in area of
    6565
    66 [[latex(dA >= 8 \pi \frac{G m r}{c^2} )]]
     66[[latex($dA >= 8 \pi \frac{G m r}{c^2} $)]]
    6767
    6868and an entropy increase of
    6969
    70 [[latex(d S >= 2 \pi k_B \frac{m r c}{\hbar})]]
     70[[latex($d S >= 2 \pi k_B \frac{m r c}{\hbar}$)]]
    7171
    7272If we use the reduced compton radius for the particle we get
    7373
    74 [[latex(d S >= 2 \pi k_B)]]
     74[[latex($d S >= 2 \pi k_B$)]]
    7575
    7676''1 possible microstate is lost to system as the particle merges with the black hole''
     
    7878If we assume that this change in energy occurs linearly over the particle's compton radius then we have
    7979
    80 [[latex(dS >= 2 \pi k_B \frac{mc}{\hbar} d x )]]
     80[[latex($dS >= 2 \pi k_B \frac{mc}{\hbar} d x $)]]
    8181
    8282and if we calculate the entropic force:
    8383
    84 [[latex(F = T \frac{dS}{dx})]]
     84[[latex($F = T \frac{dS}{dx}$)]]
    8585
    86 we have [[latex(F = k_B T 2 \pi \frac{mc}{\hbar})]]
     86we have [[latex($F = k_B T 2 \pi \frac{mc}{\hbar}$)]]
    8787
    8888
     
    9292=== Hawking radiation ===
    9393
    94 [[latex(T = \frac{\hbar g}{1\pi k_B c})]]
     94[[latex($T = \frac{\hbar g}{1\pi k_B c}$)]]
    9595
    9696where
    9797
    98 [[latex(g = \frac{GM}{r_s^2})]]
     98[[latex($g = \frac{GM}{r_s^2}$)]]
    9999
    100 so we have [[latex(F = \frac{mc^4}{4GM} = mg)]]
     100so we have [[latex($F = \frac{mc^4}{4GM} = mg$)]]
    101101
    102102
    103103=== Unruh effect: an observer in an accelerated frame experiences a non zero vacuum temperature  ===
    104104
    105 [[latex(T = \frac{\hbar a}{2\pi k_B c})]]
     105[[latex($T = \frac{\hbar a}{2\pi k_B c}$)]]
    106106
    107107
    108108[[Image(JC3.png, width=600)]]
    109109
    110 which leads to an entropic force [[latex(F = k_B T 2 \pi \frac{mc}{\hbar} = ma)]]
     110which leads to an entropic force [[latex($F = k_B T 2 \pi \frac{mc}{\hbar} = ma$)]]
    111111
    112112Newton's 2nd law!
     
    121121If we assume that the number of degrees of freedom is proportional to the area of the enclosed space like an event horizon
    122122
    123 [[latex(N=\frac{A}{l_p^2})]]
     123[[latex($N=\frac{A}{l_p^2}$)]]
    124124
    125125and that the temperature is determined by the equipartition rule
    126126
    127127
    128 [[latex(E=\frac{1}{2}Nk_BT)]]
     128[[latex($E=\frac{1}{2}Nk_BT$)]]
    129129
    130130and that the total energy is just the enclosed rest mass
    131131
    132 [[latex(E=Mc^2)]]
     132[[latex($E=Mc^2$)]]
    133133
    134134we get
    135135
    136 [[latex(T=\frac{2 l_p^2 Mc^2}{k_B A} = \frac{G \hbar M}{k_B 2\pi R^2 c})]]
     136[[latex($T=\frac{2 l_p^2 Mc^2}{k_B A} = \frac{G \hbar M}{k_B 2\pi R^2 c}$)]]
    137137
    138138and
    139139
    140 [[latex(F=G\frac{Mm}{R^2})]]
     140[[latex($F=G\frac{Mm}{R^2}$)]]
     141