Changes between Version 33 and Version 34 of TestSuite/RadiativeInstability


Ignore:
Timestamp:
07/13/11 16:13:19 (14 years ago)
Author:
blin
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • TestSuite/RadiativeInstability

    v33 v34  
    3737Our module tests $\alpha=0,\frac{1}{2},1$. We plot (not in real units) $\Delta(T) \propto T$:
    3838}}}
    39 [[Image(http://www.pas.rochester.edu/~blin/coolingfnc.png)]]
     39[[Image(http://www.pas.rochester.edu/~blin/spr11/coolingfnc.png)]]
    4040{{{ #!latex
    4141\noindent $\alpha=0$ is plotted in blue. It is constant. In this case, we expect the gas to oscillate for a while. $\alpha=\frac{1}{2}$ is magenta. $\alpha=1$ is plotted in yellow. It is the strongest cooling. We expect the gas to cool the quickest in this case, i.e. rapid dampening of oscillations.
     
    5555    \hline
    5656    \textbf{Parameter} & \textbf{Variable} & \textbf{Value} & \textbf{Units} \\ \hline
    57     Number Density & nScale & 1 & $number/cm^3$ \\ \hline
    58     Mass Density & rScale & $1.6726\times10^{-24}$ & $g/cm^3$ \\ \hline
    59     Temperature & TempScale & $1\times10^6$ & K \\ \hline
    60     Pressure & pScale & $1.3809 \times 10^{-10}$ & $dynes/cm^2$ \\ \hline
    61     Length & lScale & $1\times10^{13}$ & cm \\ \hline
    62     Velocity & VelScale & $9.0832\times10^6$ & cm/s \\ \hline
    63     Cooling & ScaleCool & $7.9738\times10^{15}$ & $\frac{g*s}{(cm/s)^5}$ \\ \hline
    64     Time & RunTimesc & $1.1009\times10^6$ & s \\ \hline
     57    Number Density & nScale & $2.99\times10^{14}$ & $number/cm^3$ \\ \hline
     58    Mass Density & rScale & $ 5.00\times10^{-10}$ & $g/cm^3$ \\ \hline
     59    Temperature & TempScale & $2.50\times10^6$ & K \\ \hline
     60    Pressure & pScale & $1.03\times10^5$ & $dynes/cm^2$ \\ \hline
     61    Length & lScale & $5.56\times10^{10}$ & cm \\ \hline
     62    Velocity & VelScale & $1.44\times10^7$ & cm/s \\ \hline
     63    Cooling & ScaleCool & $3.35\times10^{27}$ & $\frac{g*s}{(cm/s)^5}$ \\ \hline
     64    Time & RunTimesc & $3.87\times10^3$ & s \\ \hline
    6565    \end{tabular}
    6666\end{center}
     
    6868\noindent Since $ScaleCool=\frac{rScale*lScale}{m_H^2*VelScale^3}$, the cooling function will be stronger the bigger rScale and lScale values are. Also, note that $T_{shock} \propto v_0^2$:
    6969}}}
    70 [[Image(http://www.pas.rochester.edu/~blin/posttvel.png)]]
     70[[Image(http://www.pas.rochester.edu/~blin/spr11/posttvel.png)]]
    7171
    7272== Numerical Results