Changes between Version 23 and Version 24 of SpectraObject


Ignore:
Timestamp:
01/13/15 15:56:07 (10 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • SpectraObject

    v23 v24  
    9696The FFT performs a Discrete Fourier Transform (DFT) which is defined as
    9797
    98 [[latex($F_k=\displaystyle \sum_{x=1}^{N} e^{  \frac{2 \pi i}{N} k x} f_{x}$)]]
     98[[latex($F_k=\displaystyle \sum_{x=1}^{N} e^{  \frac{2 \pi i}{N} k x} f_{x}$)]] and the inverse is
     99
     100[[latex($F_k=\frac{1}{N^2} \displaystyle \sum_{x=1}^{N} e^{  \frac{-2 \pi i}{N} k x} f_{x}$)]] and the inverse is
    99101
    100102where [[latex($k$)]] is any integer. 
    101103
     104We always normalize the FFT by [[latex($1/N$)]] so that the transform has the same 'units' as the function.
     105
    102106We can see how this corresponds to a real fourier transform by making the substitutions [[latex($x'=x \Delta x$)]], [[latex($k'=k \Delta k $)]], [[latex($\Delta k = \frac{2 \pi}{L}$)]]  and [[latex($N=\frac{L}{\Delta x}$)]] and take the limit as [[latex($\Delta x \rightarrow 0$)]] 
    103107
    104 [[latex($F(k')= \frac{N}{L}\displaystyle \int_{x'=0}^{L} e^{ik' x'} f(x') dx$)]]
     108[[latex($F(k')= \frac{1}{L} \mathcal{F}(k') = \frac{1}{L} \displaystyle \int_{x'=0}^{L} e^{ik' x'} f(x') dx$)]]
    105109
    106 So that the DFT corresponds to a fourier transform where the physical wavelength is normalized by [[latex($\Delta k=\frac{2 \pi}{L}$)]] and the magnitude is normalized by [[latex($N/L$)]]
     110Note that [[latex($F(k')$)]] and [[latex($f(x')$)]] have the same units.
     111
     112So the DFT corresponds to a Fourier transform where the physical wavelength is normalized by [[latex($\Delta k=\frac{2 \pi}{L}$)]] and the magnitude is normalized by [[latex($N/L$)]]
    107113
    108114
    109 Now the FFT returns the array of transforms with [[latex($k=[0,1,2,...,N_x-1]$)]]
     115Now the FFT returns the array of transforms with [[latex($k=[0,1,2,...,N-1]$)]]
    110116
    111117However, [[latex($F_k$)]] is periodic in [[latex($k$)]] since
    112118
    113 [[latex($F_{k+N_x}=\displaystyle \sum_{x=1}^{N_x} e^{  \frac{2 \pi i}{N_x} \left(k+N_x\right) x} f_{x} = \displaystyle \sum_{x=1}^{N_x} e^{2 \pi i x} \times e^{  \frac{2 \pi i}{N_x} k x} f_{x}=\displaystyle \sum_{x=1}^{N_x} e^{  \frac{2 \pi i}{N_x} kx} f_{x}  =F_k$)]]
     119[[latex($F_{k+N}=\frac{1}{N}\displaystyle \sum_{x=1}^{N} e^{  \frac{2 \pi i}{N} \left(k+N\right) x} f_{x} = \frac{1}{N} \displaystyle \sum_{x=1}^{N} e^{2 \pi i x} \times e^{  \frac{2 \pi i}{N} k x} f_{x}=\frac{1}{N}\displaystyle \sum_{x=1}^{N} e^{  \frac{2 \pi i}{N} kx} f_{x}  =F_k$)]]
    114120
    115 We can visually see this by plotting the discrete sampling of the real part of the continuous functions for [[latex($k=-1$)]] and [[latex($k=9$)]] for a grid where [[latex($N_x=10$)]]
     121We can visually see this by plotting the discrete sampling of the real part of the continuous functions for [[latex($k=-1$)]] and [[latex($k=9$)]] for a grid where [[latex($N=10$)]]
    116122
    117123[[Image(Screen Shot 2015-01-13 at 10.57.02 AM.png​​,width=600)]]
     
    127133[[Image(Screen Shot 2015-01-13 at 12.05.47 PM.png, width=400)]]
    128134
    129 === MultiDimensional FFTs ===
     135=== !MultiDimensional FFTs ===
    130136A multidimensional DFT can be thought of as a sequence of 1D transforms in the way that a multidimensional Fourier transform is a sequence of 1D integrals.  That is
    131137