Version 24 (modified by 14 years ago) ( diff ) | ,
---|
Shocked Clumps
Common params
namb | 250 cc-1 |
Tamb | 100 K |
Rclump | 100 AU |
Run Params
Run | vwind (km/s) | tcc (yr) | final time (yr) | Tbow (K) | Ttrans (K) | Lbow (Rc) | Ltrans (Rc) | |
A | 50 | 10 | 3.00 yr | 568.9 yr | 5.64e+04 | 5.64e+03 | 2.73e-01 | 7.86e+00 |
B | 100 | 10 | 1.50 yr | 248.4 yr | 2.26e+04 | 2.26e+03 | 8.10e-01 | 1.16e-01 |
C | 200 | 10 | .750 yr | 142.2 yr | 9.02e+05 | 9.02e+04 | 3.93e+01 | 3.34e-02 |
D | 400 | 10 | .375 yr | 71.1 yr | 3.61e+06 | 3.61e+05 | 1.88e+03 | 2.11e-01 |
E | 800 | 10 | .1875 yr | 35.5 yr | 1.44e+07 | 1.44e+06 | 1.40e+04 | 2.30e+01 |
F | 200 | 100 | .750 yr | 142.2 yr | 9.02e+05 | 9.02e+04 | 3.93e+01 | 1.41e+00 |
G | 200 | 10 | .750 yr | 142.2 yr | 9.02e+05 | 9.02e+04 | inf | inf |
Shock Structure
Bow Shock
For the bow shock temperature, we assume that this shock is stationary with respect to the flow in which case the material flowing into the shock will see a shock travelling at
soWind Shock
However, before the wind reaches the clump it first shocks against the stationary ambient and produces a wind shock. To solve for the speed and temperature of this wind shock we first switch to a reference frame in which both the wind and the ambient are colliding at
If we shift to this reference frame, we then know from symmetry that the postshock velocity must be 0. Using this along with the pre-shock conditions we can solve for the post-shock density, pressure, and the shock speed by Applying the Rankine-Hugoniot jump conditions at the interface
Or we can assume that the shock is adiabatic with a high mach number which then gives us that
in which case or in this case or in the ambient frame of reference . The backward facing shock would then have velocity so the forward shock would be travelling at twice the speed as the backward shock and the shocked region would be as large as the unshocked inflow region - which is visible in the non-cooling bow runs. In any event the velocity of the wind shock is then … On a side note, if you run material into a wall at a high supersonic velocity , the shocked temperature ends up being .Eventually this wind shock slams into the shock and should produce a reflected shock. Using the same analysis we get that the reflected shock temperature within the windshock should be
however we have ignored the fact that this windshock material is already shocked, so this reflected shock would be fairly weak and some of the assumptions used above break down. Eventually this reflected shock breaks out of the windshock and into the ambient where it now sees cold material flowing in at and forms the bow shock.Transmitted Shock
And finally we have
Cloud crushing time
In the strongly cooling case, the forward and reverse wind shock collapse to the center of the shock which is travelling at
. It makes sense to use this as the wind speed of the 'shock' for calculating the cloud crushing time etc… Under these assumptions, the shock is first incident on the clump at . Furthermore the cloud crushing time is
Temperature lineout for non-cooling case
Below is a snapshot from this movie that shows the evolution of the shock structure along the axis. Also plotted are the temperatures for the bow, wind, and transmitted shocks calculated above.
Cooling Lengths
A naive calculation of Lshock using the instantaneous cooling rate at Tshock would implies that run A is bow only, run B is both, runs C & D are trans only, run E is neither, and that run F is marginally transonly only. However it does appear that run F has both a cooling bow shock and transmitted shock. To understand the discrepancy we should consider the following figure where we have plotted the cooling lengths in units of clump radius as a function of wind velocity for the bow shock as well as for the transmitted shocks with
= 10 & 100Not here we have calculated the cooling length by integrating along the cooling curve until the temperature has dropped by half. To see the same curve but using the instantaneous cooling rate see this image
If we consider where the blue curve intersects with a wind speed of 200 km/s, we see that the slope of the cooling length as a function of velocity (or temperature) is very high. As the bow shock cools it effectively slides to the left and the cooling length becomes around .1 Rc. This explains the dramatic behavior of the ambient shock in run F. The transmitted shock also follows a similar behavior transitioning from marginally cooling to a cooling length of approx .1 Rc as well.
Run E which is also very curious because while neither the bow shock nor the transmitted shock initially is cooling, the intersection of the transmitted shock with the wrap around shock triggers dramatic cooling and fragmentation. From the intersection of the red line with 800 km/s we see that the transmitted shock is on the same region of the cooling curve as the bow shock was for run F and once it begins to cool the cooling length drops from 10 Rc to .01 Rc.
Images and Movies
Direct Comparisons
For the following set of figures each image is a tiled plot showing the results from the 6 runs as follows:
Run G (200 no cool) | Run C (200 cool) |
Run A (50 cool) | Run D (400 cool) |
Run B (100 cool) | Run E (800 cool) |
The time slider is in units of cloud crushing time and the temperature scale is proportional to vwind2 to enhance the visualization of cooling. As the wind velocity goes from 50 to 100 to 200, the wind shock cools more and more strongly. At 400 km/s and above, the wind shock becomes too hot to effectively cool. The transmitted shock follows a similar trend from vwind = 100 to 400 km/s before becoming too hot at vwind = 800 km/s to cool until it receives a density enhancement from the reverse clump shock. Note the similar behavior of the transmitted shock in run E to the wind shock in run C.
Density comparison | Scaled Temperature Comparison (to vwind2) | |
movie | movie | |
5 | ||
10 | ||
15 | ||
20 | ||
25 | ||
30 |
Compiled results
A 50 10 (bow only) | D 400 10 (clump only) | E 800 10 (neither ) | F 200 100 (both) | |
movie | movie zoom | movie | movie zoom | |
5 | ||||
10 | ||||
15 | ||||
20 | ||||
25 | ||||
30 |
Paper Figures
Zone Plots
Analytic Zone Plot
Analytic Zone Plot Series
Raymond Zone Plot Series with varying clump size
Schlieriens
We know have data from a run at 200 km/s with a density constrast of 10 with and without cooling. I've replaced the 800 km/s run with the 200 km/s without cooling and the run with a density contrast of 100 with one with a density constrast of 10.
Below are schlieriens of runs G, A, C, D at frames 7, 11, and 15 at t = .6957, 1.4546, 2.2136 tcc
Here are the previous schlieriens
Schlieriens of density at three different frames matching the transmitted shock position
Schlieriens of density at three different frames matching the bow shock position
Paper Drafts
- Includes Adam's Section 1
- Includes updated Sections 2 and 3, with comments indicated by square brackets, by Kris.
- Includes Figures and Tables pulled from this wiki page by Jonathan.
Draft 110519 by KY (PDF only)
- Basically first skeleton draft.
Attachments (59)
-
movie50_100005.png
(28.0 KB
) - added by 14 years ago.
50_10_5
-
movie50_100010.png
(38.6 KB
) - added by 14 years ago.
50_10_10
-
movie50_100015.png
(60.6 KB
) - added by 14 years ago.
50_10_15
-
movie50_100020.png
(66.5 KB
) - added by 14 years ago.
50_10_20
-
movie50_100025.png
(51.8 KB
) - added by 14 years ago.
50_10_25
-
movie50_100030.png
(23.8 KB
) - added by 14 years ago.
50_10_30
-
movie0005.png
(45.5 KB
) - added by 14 years ago.
200_100_5
-
movie0010.png
(65.7 KB
) - added by 14 years ago.
200_100_10
-
movie0015.png
(118.1 KB
) - added by 14 years ago.
200_100_15
-
movie0020.png
(137.5 KB
) - added by 14 years ago.
200_100_20
-
movie0025.png
(127.2 KB
) - added by 14 years ago.
200_100_25
-
movie0005.2.png
(24.5 KB
) - added by 14 years ago.
400_10_5
-
movie0010.2.png
(31.6 KB
) - added by 14 years ago.
400_10_10
-
movie0015.2.png
(36.6 KB
) - added by 14 years ago.
400_10_15
-
movie0020.2.png
(50.6 KB
) - added by 14 years ago.
400_10_20
-
movie0025.2.png
(48.0 KB
) - added by 14 years ago.
400_10_25
-
movie0030.png
(32.5 KB
) - added by 14 years ago.
400_10_30
-
movie_800_100005.png
(33.0 KB
) - added by 14 years ago.
800_10_5
-
movie_800_100010.png
(44.5 KB
) - added by 14 years ago.
800_10_10
-
movie_800_100015.png
(53.7 KB
) - added by 14 years ago.
800_10_15
-
movie_800_100020.png
(70.0 KB
) - added by 14 years ago.
800_10_20
-
movie_800_100025.png
(70.6 KB
) - added by 14 years ago.
800_10_25
-
movie_800_100030.png
(45.7 KB
) - added by 14 years ago.
800_10_30
-
movie_800_10.gif
(1.4 MB
) - added by 14 years ago.
800_10_movie
-
movie.gif
(1.8 MB
) - added by 14 years ago.
200_100 movie
-
movie_50_10.gif
(1.1 MB
) - added by 14 years ago.
50_10 movie
-
movie_400_10.gif
(1016.0 KB
) - added by 14 years ago.
400_10 movie
-
zoom.gif
(2.3 MB
) - added by 14 years ago.
200_100 movie zoom
-
zoom_400_10.gif
(1.5 MB
) - added by 14 years ago.
400_10 movie zoom
-
CoolingLengths.png
(19.5 KB
) - added by 14 years ago.
Cooling lengths of bow shock, & transmitted shock for chi=10, 100 in units of clump radius
- 00-main.pdf (95.5 KB ) - added by 14 years ago.
-
SingleAnalyticSmall.png
(17.0 KB
) - added by 14 years ago.
Analytic Zone Plot for single parameter regime
-
AnalyticSeries.png
(54.0 KB
) - added by 14 years ago.
Analytic Zone Plot for 4 different parameter regimes
-
RaymondSeries.png
(71.2 KB
) - added by 14 years ago.
Series of zone plots with different clump radii generated with data from Raymond 1D sims
-
RaymondDensitySeries.png
(65.2 KB
) - added by 14 years ago.
Series of zone plots with different ambient densities generated with data from Raymond 1D sims
-
CoolingLengths2.png
(18.7 KB
) - added by 14 years ago.
Cooling lengths of bow shock, & transmitted shock for chi=10, 100 in units of clump radius generated by interpolating the cooling curve…
-
Temp_LineOut0009.png
(26.0 KB
) - added by 14 years ago.
Temperature lineout of 800_10 run before wrap around shock hits axis.
-
Temp_LineOut.gif
(529.8 KB
) - added by 14 years ago.
Movie of Temperature LineOut for run 800_10
-
schlierien_transsync71123.png
(573.3 KB
) - added by 14 years ago.
Schlierien plot synchronized by transmitted shock position at chi=10 frames 7 11 and 23
-
schlierien_bowsync71123.png
(575.9 KB
) - added by 14 years ago.
Schlierien plot synchronized by bow shock position at frames 7 11 and 23
-
200nc_50_100_200_7_11_15.png
(445.5 KB
) - added by 14 years ago.
Schlierien comparison of winds at 200km/s w/o cooling, 50 km/s, 100 km/s, and 200 km/s
-
DMZonePlot250100.png
(14.7 KB
) - added by 14 years ago.
ZonePlot of DMCooling for runs
- density_comparison0005.png (29.6 KB ) - added by 14 years ago.
- density_comparison0010.png (64.7 KB ) - added by 14 years ago.
- density_comparison0015.png (107.3 KB ) - added by 14 years ago.
- density_comparison0020.png (123.7 KB ) - added by 14 years ago.
- density_comparison0025.png (88.5 KB ) - added by 14 years ago.
- density_comparison0030.png (33.5 KB ) - added by 14 years ago.
- density_comparison.gif (1.6 MB ) - added by 14 years ago.
- ScaledTemp_comparison0000.png (5.3 KB ) - added by 14 years ago.
- ScaledTemp_comparison0010.png (64.8 KB ) - added by 14 years ago.
- ScaledTemp_comparison0015.png (105.3 KB ) - added by 14 years ago.
- ScaledTemp_comparison0020.png (120.4 KB ) - added by 14 years ago.
- ScaledTemp_comparison0025.png (89.9 KB ) - added by 14 years ago.
- ScaledTemp_comparison0030.png (44.7 KB ) - added by 14 years ago.
- ScaledTemp_comparison.gif (1.7 MB ) - added by 14 years ago.
- ScaledTemp_comparison0005.png (24.1 KB ) - added by 14 years ago.
- cooling110601KY.tar.gz (642.1 KB ) - added by 14 years ago.
- 110601KY.pdf (663.2 KB ) - added by 14 years ago.