2 | | Run Params |
3 | | |
4 | | || v,,wind,, (km/s) || chi || final time || T_bow || T_trans || |
5 | | || 50 || 10 || 568.9 yr || |
6 | | || 100 || 10 || 248.4 yr || |
7 | | || 200 || 10 || 142.2 yr || |
8 | | || 400 || 10 || 71.1 yr || |
9 | | || 800 || 10 || 35.6 yr || |
10 | | || 200 || 100 || 142.2 yr || |
11 | | |
12 | | T_bow calculated as [[latex($T=\frac{3 X v_{wind}^2}{16 k_b}$)]] |
13 | | |
14 | | |
| 6 | |
| 7 | |
| 8 | Run Params |
| 9 | |
| 10 | || Run || v,,wind,, (km/s) || chi || final time (yr) || T,,bow,, (K)|| T,,trans,, (K)|| L,,bow,, (R,,c,,) || L,,trans,, (R,,c,,) || |
| 11 | || A || 50 || 10 || 568.9 yr || 5.64e+04 || 5.64e+03 || 2.51e-01 || 9.62e+00 || |
| 12 | || B || 100 || 10 || 248.4 yr || || || || || |
| 13 | || C || 200 || 10 || 142.2 yr || || || || || |
| 14 | || D || 400 || 10 || 71.1 yr || 3.61e+06 || 3.61e+05 || 2.60e+03 || 3.71e-01 || |
| 15 | || E || 800 || 10 || 35.6 yr || 1.44e+07 || 1.44e+06 || 2.02e+04 || 5.31e+01 || |
| 16 | || F || 200 || 100 || 142.2 yr || 9.02e+05 || 9.02e+04 || 9.90e+01 || 1.74e+00 || |
| 17 | |
| 18 | |
| 19 | [[latex($T_{bow}=\frac{3 X v_{wind}^2}{16 k_b}$)]] |
| 20 | |
| 21 | [[latex($T_{trans}=T_{bow}/\chi$)]] |
| 22 | |
| 23 | |
| 24 | A naive calculation of L,,shock,, using the instantaneous cooling rate at T,,shock,, would implies that run A is bow only, run D is trans only, run E is neither, and that run F is marginally trans only. However, consider the following figure where we have plotted the cooling lengths in units of clump radius as a function of wind velocity for the bow shock as well as for the transmitted shocks with [[latex($\chi$)]] = 10 & 100 |
| 25 | |
| 26 | |
| 27 | |