Changes between Version 25 and Version 26 of PlanetaryAtmospheres


Ignore:
Timestamp:
09/01/15 17:18:48 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • PlanetaryAtmospheres

    v25 v26  
    3232This implies that $q$ must be constant, $a$ must scale with the length scale, and that $\Omega$ must scale with the inverse time scale.
    3333
    34 Time and length similarities allow us to fix the total mass and separation without loss of generality.  In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality.  So we can reduce the list of 9 primary variables to the following eight dimensionless variables that define the interaction
     34Time and length similarities allow us to fix the total mass and separation without loss of generality. 
     35In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality.  So we can reduce the list of 11 primary variables to the following eight dimensionless variables that define the interaction
    3536
    3637|| $q=\frac{M_p}{M_s}$ || mass ratio ||
     
    5152|| $\xi_{Mp}=\frac{\lambda_p}{2} \xi_p$ || Ratio of sonic radius of planetary wind to planetary orbital radius ||
    5253|| $\chi_{bow} = \frac{\rho_p \left ( r_{bow} \right )}{\rho_s \left ( a-r_{bow} \right )}$ || Density ratio at bow shock. ||
    53 || $\xi_{Ms}=\frac{\lambda_s}{2} \xi_s$ || Ratio of sonic radius of stellar wind to planetary orbital radius ||
     54|| $\xi_{s}=\frac{R_s}{a}$ || Ratio of stellar radius to orbital radius ||
    5455|| $\sigma_{p,bow} = \frac{B_p^2 R_p^6}{r_{bow} ^6 \rho_p \left( r_{bow} \right ) \left ( c_p^2+v_p \left(r_{bow} \right)^2 \right ) }$ || Ratio of planetary magnetic pressure to ram pressure (plus thermal) at bow shock ||
    5556|| $\sigma_{s,bow} = \frac{B_s^2 R_s^6}{\left ( a - r_{bow} \right ) ^6 \rho_s \left( a - r_{bow} \right ) \left ( c_s^2+v_s \left(a - r_{bow} \right)^2 \right ) }$ || Ratio of stellar magnetic pressure to ram pressure (plus thermal) at bow shock ||
     
    8586
    8687
    87 and numerically solve the following 3 equations for $\xi_s$ and $\chi$, and $\lambda_s$
     88and numerically solve the following 2 equations for $\lambda_s$ and $\chi$
    8889|| $\frac{ 1+\psi\left ( \frac{  1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }{ 1+\psi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right ) } = \frac{q \chi_{bow} \xi_{Ms} \left ( 1 + \sigma_p \right ) }{\xi_{Mp} \left ( 1 + \sigma_s \right ) } $ ||
    8990|| $\chi=\chi_{bow} \frac{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}$ ||
     
    9798and
    9899
    99 $c^2=\frac{G M}{r \lambda}$ so $\frac{c_p^2}{c_s^2} = q \frac{\xi_s lambda_s}{\xi_p \lambda_p} = q \frac{\xi_Ms}{\xi_Mp}$
     100$c^2=\frac{G M}{r \lambda}$ so $\frac{c_p^2}{c_s^2} = q \frac{\xi_s \lambda_s}{\xi_p \lambda_p} = q \frac{\xi_Ms}{\xi_Mp}$
    100101
    101102
    102103$\xi_{bow}=\mbox{solve} \left [ \left ( 1 + \psi(\frac{1-\xi_{bow}}{\xi_s}) \right) \left ( 1 + \sigma_s \right ) =  q \frac{\xi_Ms}{\xi_Mp}  \left ( 1 + \psi(\frac{\xi_{bow}}{\xi_p}) \right) \left ( 1 + \sigma_p \right ) \right ] $
    103104
     105
     106However - apparently those 8 params are not independent.  Instead of specifying $\xi_{Ms}$ let's specify the temperature of the planet.
    104107
    105108