Changes between Version 17 and Version 18 of PlanetaryAtmospheres


Ignore:
Timestamp:
08/28/15 18:01:49 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • PlanetaryAtmospheres

    v17 v18  
    3030|| $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius ||
    3131|| $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius ||
    32 || $\xi_M=\frac{\lambda_p}{2} \xi_p$ || Ratio of sonic radius to planetary orbital radius ||
     32|| $\xi_{Mp}=\frac{\lambda_p}{2} \xi_p$ || Ratio of sonic radius of planetary wind to planetary orbital radius ||
    3333|| $\chi_{bow}$ || Density ratio at bow shock. ||
    34 || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius ||
     34|| $\xi_{Ms}=\frac{\lambda_p}{2} \xi_s$ || Ratio of sonic radius of stellar wind to planetary orbital radius ||
    3535
    3636Using the following relations,
     
    4040|| $c_s=\frac{k_B T_s}{m_H}$ || stellar sound speed ||
    4141|| $c_p=\frac{k_B T_p}{m_H}$ || planetary sound speed ||
    42 || $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ || Bondi-Hoyle radius ||
    43 || $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ || bow shock standoff distance ||
     42|| $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ || bow shock standoff distance
    4443
    4544and the dimensionless solution to the Parker Wind
     
    6059|| $q=\frac{\xi_H^3}{3}$ ||
    6160|| $\xi_p=\xi_p$ ||
    62 || $\lambda_p=\frac{2 \xi_M}{\xi_p} $ ||
     61|| $\lambda_p=\frac{2 \xi_{Mp}}{\xi_p} $ ||
    6362
    64 and numerically solve the following 3 equations for $\xi_s$, $\lambda_s$, and $\chi$
    6563
    66 || $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1}, \lambda_s \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ ||
    67 || $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }$ ||
    68 || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s}, \lambda_s \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$
     64
     65and numerically solve the following 3 equations for $\xi_s$ and $\chi$, and $\lambda_s$
     66|| $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s}, \lambda_s \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )} = \frac{q \xi_{Ms}}{\xi_{Mp}}\frac{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }$ ||
     67|| $\chi=\chi_{bow} \frac{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}$ ||
     68|| $\lambda_s=\frac{2 \xi_{Ms}}{\xi_s} $ ||
    6969
    7070
     
    8181
    8282
    83 In general, the planet radius will always be the smallest.  You can probably argue that the Hill radius will in general be larger than the Bondi Hoyle radius, since
    84 
    85 $\frac{r_{H}}{r_{BH}}=\frac{v_s(a)^2+(a\Omega)^2+c_s^2}{2 G M_p} a\left ( \frac{q}{3} \right ) ^ {1/3} $
    86 $ = \frac{v_s(a)^2+G(M_s+M_p)/a+c_s^2}{2 G M_p} a\left ( \frac{q}{3} \right ) ^ {1/3} =\left ( \frac{ \left ( \psi(\frac{1}{\xi_s})+1 \right )}{2\xi_s \lambda_s q}+\frac{1+q}{2q} \right )\left ( \frac{q}{3} \right ) ^ {1/3} $
    87 
    88 Now $\psi \approx< 5$, $q \approx 1/1000$, $\xi_s \approx 1/100$, so in general $r_H >> r_{BH}$
    89 
    90 However, the location of the stellar sonic radius compared to a can be used to constrain the velocity of the stellar wind - and would presumably have more bearing on the dynamics of the bow shock.
    91 
    92 
    93 
    94 As a side note, we have
    95 || $\frac{v_{esc}}{c_p}=\sqrt{2 \lambda_p}$ || planetary escape speed ||
    96 || $\xi_\Omega=\frac{v_{esc}}{2 a \Omega}=\frac{2q}{ (q + 1)\xi_p}$ || dimensionless radius at which coriolis forces bend planetary wind - not independent ||
     83In general, the planet radius will always be the smallest.  But they ignored the location of the sonic surfaces for both the planet and stellar winds as well as the density contrast at the bow shock - which all might be important for determining the morphology of resulting flows.
    9784
    9885