66 | | || $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1}, \lambda_s \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ || |
67 | | || $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }$ || |
68 | | || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s}, \lambda_s \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$ |
| 64 | |
| 65 | and numerically solve the following 3 equations for $\xi_s$ and $\chi$, and $\lambda_s$ |
| 66 | || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s}, \lambda_s \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )} = \frac{q \xi_{Ms}}{\xi_{Mp}}\frac{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }$ || |
| 67 | || $\chi=\chi_{bow} \frac{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}$ || |
| 68 | || $\lambda_s=\frac{2 \xi_{Ms}}{\xi_s} $ || |
83 | | In general, the planet radius will always be the smallest. You can probably argue that the Hill radius will in general be larger than the Bondi Hoyle radius, since |
84 | | |
85 | | $\frac{r_{H}}{r_{BH}}=\frac{v_s(a)^2+(a\Omega)^2+c_s^2}{2 G M_p} a\left ( \frac{q}{3} \right ) ^ {1/3} $ |
86 | | $ = \frac{v_s(a)^2+G(M_s+M_p)/a+c_s^2}{2 G M_p} a\left ( \frac{q}{3} \right ) ^ {1/3} =\left ( \frac{ \left ( \psi(\frac{1}{\xi_s})+1 \right )}{2\xi_s \lambda_s q}+\frac{1+q}{2q} \right )\left ( \frac{q}{3} \right ) ^ {1/3} $ |
87 | | |
88 | | Now $\psi \approx< 5$, $q \approx 1/1000$, $\xi_s \approx 1/100$, so in general $r_H >> r_{BH}$ |
89 | | |
90 | | However, the location of the stellar sonic radius compared to a can be used to constrain the velocity of the stellar wind - and would presumably have more bearing on the dynamics of the bow shock. |
91 | | |
92 | | |
93 | | |
94 | | As a side note, we have |
95 | | || $\frac{v_{esc}}{c_p}=\sqrt{2 \lambda_p}$ || planetary escape speed || |
96 | | || $\xi_\Omega=\frac{v_{esc}}{2 a \Omega}=\frac{2q}{ (q + 1)\xi_p}$ || dimensionless radius at which coriolis forces bend planetary wind - not independent || |
| 83 | In general, the planet radius will always be the smallest. But they ignored the location of the sonic surfaces for both the planet and stellar winds as well as the density contrast at the bow shock - which all might be important for determining the morphology of resulting flows. |