Changes between Version 15 and Version 16 of PlanetaryAtmospheres


Ignore:
Timestamp:
08/28/15 17:46:38 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • PlanetaryAtmospheres

    v15 v16  
    33== Defining the parameter space for stellar-planetary wind interactions ==
    44
    5 Ignoring MHD for the moment, and assuming circular orbits, we can define the problem using these 9 primary variables
     5Ignoring magnetic fields, and assuming circular orbits, we can define the problem using these 9 primary variables
    66
    77|| $M_p$ || Mass of planet ||
     
    6969
    7070
     71
     72Matsakos et al, compare the ordering of the Hill radius, the bow radius, and the magnetic radius which give 6 different possible orderings.  They lump them into 4 different types.
     73
     74|| I || $\xi_H > \xi_\beta > \xi_{bow}$ ||
     75|| II || $\xi_H > \xi_{bow} > \xi_{beta}$ ||
     76|| III || $\xi_{bow} > \xi_\beta > \xi_H$ ||
     77|| III || $\xi_{bow} > \xi_H > \xi_\beta$ ||
     78|| IV || $\xi_\beta > \xi_{bow} > \xi_H$ ||
     79|| IV || $\xi_\beta > \xi_H > \xi_{bow}$ ||
     80
     81
     82
     83In general, the planet radius will always be the smallest.  You can probably argue that the Hill radius will in general be larger than the Bondi Hoyle radius, since
     84
     85$\frac{r_{H}}{r_{BH}}=\frac{v_s(a)^2+(a\Omega)^2+c_s^2}{2 G M_p} a\left ( \frac{q}{3} \right ) ^ {1/3} $
     86$ = \frac{v_s(a)^2+G(M_s+M_p)/a+c_s^2}{2 G M_p} a\left ( \frac{q}{3} \right ) ^ {1/3} =\left ( \frac{ \left ( \psi(\frac{1}{\xi_s})+1 \right )}{2\xi_s \lambda_s q}+\frac{1+q}{2q} \right )\left ( \frac{q}{3} \right ) ^ {1/3} $
     87
     88Now $\psi \approx< 5$, $q \approx 1/1000$, $\xi_s \approx 1/100$, so in general $r_H >> r_{BH}$
     89
     90However, the location of the stellar sonic radius compared to a can be used to constrain the velocity of the stellar wind - and would presumably have more bearing on the dynamics of the bow shock.
     91
     92
     93
     94
     95The planet radius probably does not matter to much (as long as it is small enough), but if you include the sonic radius and the bondi-hoyle radius, you could have 120 different orderings possible.  You could also just focus on the dominant radius (and have 5 types), or the dominant 2 and have 20 sims.  In addition you could modify the density contrast at the bow shock to double the number of runs.
     96
     97
     98 different
     99
     100
     101
     102
     103
     104
    71105As a side note, we have
    72106|| $\frac{v_{esc}}{c_p}=\sqrt{2 \lambda_p}$ || planetary escape speed ||