66 | | || $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1} \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ || |
67 | | || $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p} \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s} \right ) }$ || |
68 | | || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s} \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p} \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$ |
| 66 | || $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1}, \lambda_s \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ || |
| 67 | || $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s}, \lambda_s \right ) }$ || |
| 68 | || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s}, \lambda_s \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p}, \lambda_p \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$ |