6 | | $M_p$ |
7 | | $R_p$ |
8 | | $T_p$ |
9 | | $\rho_p$ |
10 | | $M_s$ |
11 | | $R_s$ |
12 | | $T_s$ |
13 | | $\rho_s$ |
14 | | $a$ |
| 7 | || $M_p$ || Mass of planet || |
| 8 | || $R_p$ || Radius of planet || |
| 9 | || $T_p$ || Temperature at planet surface || |
| 10 | || $\rho_p$ || Density at planet surface || |
| 11 | || $M_s$ || Mass of star || |
| 12 | || $R_s$ || Radius of star || |
| 13 | || $T_s$ || Temperature at stellar surface || |
| 14 | || $\rho_s$ || Density at stellar surface || |
| 15 | || $a$ || orbital separation || |
| 16 | |
| 17 | Time and length symmetry allows us to fix the total mass and separation without loss of generality. In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality. So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction |
19 | | * $\chi = \rho_p / \rho_s $ |
20 | | * $\lambda_p=\frac{G M_p m_H}{R_p k_b T_p}$ |
21 | | * $\lambda_s=\frac{G M_s m_H}{R_s k_b T_s}$ |
22 | | * $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$ |
23 | | * $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3}$ |
24 | | * $v_{esc}=\sqrt{\frac{2 G M_p}{R_p}}$ |
25 | | * $r_\Omega=\frac{v_{esc}}{2 \Omega}$ |
26 | | * $q=\frac{M_p}{M_s}$ |
27 | | * $c_s=\frac{k_B T_s}{m_H}$ |
28 | | * $c_p=\frac{k_B T_p}{m_H}$ |
29 | | * $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ |
| 27 | Now instead of those 6, we may want to define the following 5 length scales, and density ratio at the bow shock |
| 28 | |
| 29 | || $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius || |
| 30 | || $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius || |
| 31 | || $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius || |
| 32 | || $\xi_M=\frac{\lambda_p}{2} \xi_p$ || Ratio of sonic radius to planetary orbital radius || |
| 33 | || $\chi_{bow}$ || Density ratio at bow shock. || |
| 34 | || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius || |
| 35 | |
| 36 | Using the following relations, |
| 37 | |
| 38 | || $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$ || orbital angular velocity || |
| 39 | || $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3} = a \left ( \frac{q}{3} \right ) ^ {1/3}$ || Hill radius || |
| 40 | || $c_s=\frac{k_B T_s}{m_H}$ || stellar sound speed || |
| 41 | || $c_p=\frac{k_B T_p}{m_H}$ || planetary sound speed || |
| 42 | || $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ || Bondi-Hoyle radius || |
| 43 | || $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ || bow shock standoff distance || |
| 44 | |
| 45 | and the dimensionless solution to the Parker Wind |
40 | | |
41 | | * $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ |
42 | | |
43 | | |
44 | | Time and length symmetry allows us to fix the total mass and separation without loss of generality. In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality. So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction |
45 | | |
46 | | $q$, $\chi$, $\xi_p$, $\xi_s$, $\lambda_p$, $\lambda_s$ |
47 | | |
48 | | where $\xi_p=R_p/a$ and $\xi_s=R_s/a$ |
49 | | |
50 | | |
51 | | Now instead of those 6, we may want to define |
52 | | |
53 | | || $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius || |
54 | | || $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius || |
55 | | || $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius || |
56 | | || $\xi_{\Omega}=\frac{r_\Omega}{a}$ || Ratio of centrifugal radius to orbital radius || |
57 | | || $\chi_{bow}$ || Density ratio at bow shock. || |
58 | | || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius || |
59 | | |
60 | | This then allows us to calculate |
| 58 | We can directly calculate |
| 64 | and numerically solve the following 3 equations for $\xi_s$, $\lambda_s$, and $\chi$ |
| 65 | |
| 66 | || $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1} \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ || |
| 67 | || $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p} \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s} \right ) }$ || |
| 68 | || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s} \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p} \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$ |
| 69 | |
| 70 | |
| 71 | As a side note, we have |
| 72 | || $\frac{v_{esc}}{c_p}=\sqrt{2 \lambda_p}$ || planetary escape speed || |
| 73 | || $\xi_\Omega=\frac{v_{esc}}{2 a \Omega}=\frac{2q}{ (q + 1)\xi_p}$ || dimensionless radius at which coriolis forces bend planetary wind - not independent || |