Changes between Version 13 and Version 14 of PlanetaryAtmospheres


Ignore:
Timestamp:
08/27/15 16:15:33 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • PlanetaryAtmospheres

    v13 v14  
    11[[BackLinksMenu()]]
    22[[PageOutline]]
     3== Defining the parameter space for stellar-planetary wind interactions ==
    34
    4 Primary variables
     5Ignoring MHD for the moment, and assuming circular orbits, we can define the problem using these 9 primary variables
    56
    6 $M_p$
    7 $R_p$
    8 $T_p$
    9 $\rho_p$
    10 $M_s$
    11 $R_s$
    12 $T_s$
    13 $\rho_s$
    14 $a$
     7|| $M_p$ || Mass of planet ||
     8|| $R_p$ || Radius of planet ||
     9|| $T_p$ || Temperature at planet surface ||
     10|| $\rho_p$ || Density at planet surface ||
     11|| $M_s$ || Mass of star ||
     12|| $R_s$ || Radius of star ||
     13|| $T_s$ || Temperature at stellar surface ||
     14|| $\rho_s$ || Density at stellar surface ||
     15|| $a$ || orbital separation ||
     16
     17Time and length symmetry allows us to fix the total mass and separation without loss of generality.  In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality.  So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction
    1518
    1619
    17 Equations - assuming circular orbits and isothermal parker winds
     20|| $q=\frac{M_p}{M_s}$ || mass ratio ||
     21|| $\chi = \rho_p / \rho_s $ || ratio of densities at surfaces ||
     22|| $\xi_p=R_p/a$  || dimensionless planetary radius ||
     23|| $\xi_s=R_s/a$ || dimensionless stellar radius ||
     24|| $\lambda_p=\frac{G M_p m_H}{R_p k_b T_p}$ || characterizes planetary wind ||
     25|| $\lambda_s=\frac{G M_s m_H}{R_s k_b T_s}$ || characterizes stellar wind ||
    1826
    19 * $\chi = \rho_p / \rho_s $
    20 * $\lambda_p=\frac{G M_p m_H}{R_p k_b T_p}$
    21 * $\lambda_s=\frac{G M_s m_H}{R_s k_b T_s}$
    22 * $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$
    23 * $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3}$
    24 * $v_{esc}=\sqrt{\frac{2 G M_p}{R_p}}$
    25 * $r_\Omega=\frac{v_{esc}}{2 \Omega}$
    26 * $q=\frac{M_p}{M_s}$
    27 * $c_s=\frac{k_B T_s}{m_H}$
    28 * $c_p=\frac{k_B T_p}{m_H}$
    29 * $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$
     27Now instead of those 6, we may want to define the following 5 length scales, and density ratio at the bow shock
     28
     29|| $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius ||
     30|| $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius ||
     31|| $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius ||
     32|| $\xi_M=\frac{\lambda_p}{2} \xi_p$ || Ratio of sonic radius to planetary orbital radius ||
     33|| $\chi_{bow}$ || Density ratio at bow shock. ||
     34|| $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius ||
     35
     36Using the following relations,
     37
     38||  $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$ || orbital angular velocity ||
     39|| $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3} = a \left ( \frac{q}{3} \right ) ^ {1/3}$ || Hill radius ||
     40|| $c_s=\frac{k_B T_s}{m_H}$ || stellar sound speed ||
     41|| $c_p=\frac{k_B T_p}{m_H}$ || planetary sound speed ||
     42|| $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ || Bondi-Hoyle radius ||
     43|| $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ || bow shock standoff distance ||
     44
     45and the dimensionless solution to the Parker Wind
    3046
    3147* $\psi(\xi,\lambda) = \mbox{solve} \left [ \psi - \ln \psi=-3 -4 \ln \frac{\lambda}{2}+4 \ln \xi + 2 \frac {\lambda}{\xi} \right ]$
    3248* $\phi(\xi,\lambda) = \exp \left [ -\frac{\lambda}{\xi} \left (\xi - 1 \right ) - \frac{1}{2} \psi(\xi,\lambda) \right ]$
     49
     50which gives us the following solutions for the stellar and planetary winds
    3351* $v_s(r) = \sqrt{\psi(\frac{r}{R_s}, \lambda_s)}c_s$
    3452* $P_s(r)=\frac{\rho_s T_s k_B}{m_H} \phi \left ( \frac{r}{R_s}, \lambda_s \right )$
     
    3856* $\rho_p(r)=\rho_p \phi \left ( \frac{r}{R_p}, \lambda_p \right )$
    3957
    40 
    41 * $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$
    42 
    43 
    44 Time and length symmetry allows us to fix the total mass and separation without loss of generality.  In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality.  So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction
    45 
    46 $q$, $\chi$, $\xi_p$, $\xi_s$, $\lambda_p$, $\lambda_s$
    47 
    48 where $\xi_p=R_p/a$ and $\xi_s=R_s/a$
    49 
    50 
    51 Now instead of those 6, we may want to define
    52 
    53 || $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius ||
    54 || $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius ||
    55 || $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius ||
    56 || $\xi_{\Omega}=\frac{r_\Omega}{a}$ || Ratio of centrifugal radius to orbital radius ||
    57 || $\chi_{bow}$ || Density ratio at bow shock. ||
    58 || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius ||
    59 
    60 This then allows us to calculate
     58We can directly calculate
    6159
    6260|| $q=\frac{\xi_H^3}{3}$ ||
    6361|| $\xi_p=\xi_p$ ||
    64 ||
     62|| $\lambda_p=\frac{2 \xi_M}{\xi_p} $ ||
    6563
     64and numerically solve the following 3 equations for $\xi_s$, $\lambda_s$, and $\chi$
     65
     66|| $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1} \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ ||
     67|| $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p} \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s} \right ) }$ ||
     68|| $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s} \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p} \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$
     69
     70
     71As a side note, we have
     72|| $\frac{v_{esc}}{c_p}=\sqrt{2 \lambda_p}$ || planetary escape speed ||
     73|| $\xi_\Omega=\frac{v_{esc}}{2 a \Omega}=\frac{2q}{ (q + 1)\xi_p}$ || dimensionless radius at which coriolis forces bend planetary wind - not independent ||
    6674
    6775