| 24 | * $v_{esc}=\sqrt{\frac{2 G M_p}{R_p}}$ |
| 25 | * $r_\Omega=\frac{v_{esc}}{2 \Omega}$ |
| 26 | * $q=\frac{M_p}{M_s}$ |
| 27 | * $c_s=\frac{k_B T_s}{m_H}$ |
| 28 | * $c_p=\frac{k_B T_p}{m_H}$ |
| 29 | * $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ |
| 30 | |
| 31 | * $\psi(\xi,\lambda) = \mbox{solve} \left [ \psi - \ln \psi=-3 -4 \ln \frac{\lambda}{2}+4 \ln \xi + 2 \frac {\lambda}{\xi} \right ]$ |
| 32 | * $\phi(\xi,\lambda) = \exp \left [ -\frac{\lambda}{\xi} \left (\xi - 1 \right ) - \frac{1}{2} \psi(\xi,\lambda) \right ]$ |
| 33 | * $v_s(r) = \sqrt{\psi(\frac{r}{R_s}, \lambda_s)}c_s$ |
| 34 | * $P_s(r)=\frac{\rho_s T_s k_B}{m_H} \phi \left ( \frac{r}{R_s}, \lambda_s \right )$ |
| 35 | * $\rho_s(r)=\rho_s \phi \left ( \frac{r}{R_s}, \lambda_s \right )$ |
| 36 | * $v_p(r) = \sqrt{\psi(\frac{r}{R_p}, \lambda_p)}c_p$ |
| 37 | * $P_p(r)=\frac{\rho_p T_p k_B}{m_H} \phi \left ( \frac{r}{R_p}, \lambda_p \right )$ |
| 38 | * $\rho_p(r)=\rho_p \phi \left ( \frac{r}{R_p}, \lambda_p \right )$ |
| 39 | |
| 40 | |
| 41 | * $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ |
| 42 | |
| 43 | |
| 44 | Time and length symmetry allows us to fix the total mass and separation without loss of generality. In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality. So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction |
| 45 | |
| 46 | $q$, $\chi$, $\xi_p$, $\xi_s$, $\lambda_p$, $\lambda_s$ |
| 47 | |
| 48 | where $\xi_p=R_p/a$ and $\xi_s=R_s/a$ |
| 49 | |
| 50 | |
| 51 | Now instead of those 6, we may want to define |
| 52 | |
| 53 | || $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius || |
| 54 | || $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius || |
| 55 | || $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius || |
| 56 | || $\xi_{\Omega}=\frac{r_\Omega}{a}$ || Ratio of centrifugal radius to orbital radius || |
| 57 | || $\chi_{bow}$ || Density ratio at bow shock. || |
| 58 | || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius || |
| 59 | |
| 60 | This then allows us to calculate |
| 61 | |
| 62 | || $q=\frac{\xi_H^3}{3}$ || |
| 63 | || $\xi_p=\xi_p$ || |
| 64 | || |
| 65 | |
| 66 | |