Changes between Version 12 and Version 13 of PlanetaryAtmospheres


Ignore:
Timestamp:
08/27/15 12:15:45 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • PlanetaryAtmospheres

    v12 v13  
    1515
    1616
    17 Equations
     17Equations - assuming circular orbits and isothermal parker winds
     18
    1819* $\chi = \rho_p / \rho_s $
    1920* $\lambda_p=\frac{G M_p m_H}{R_p k_b T_p}$
    2021* $\lambda_s=\frac{G M_s m_H}{R_s k_b T_s}$
    21 * $\omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$
     22* $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$
    2223* $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3}$
     24* $v_{esc}=\sqrt{\frac{2 G M_p}{R_p}}$
     25* $r_\Omega=\frac{v_{esc}}{2 \Omega}$
     26* $q=\frac{M_p}{M_s}$
     27* $c_s=\frac{k_B T_s}{m_H}$
     28* $c_p=\frac{k_B T_p}{m_H}$
     29* $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$
     30
     31* $\psi(\xi,\lambda) = \mbox{solve} \left [ \psi - \ln \psi=-3 -4 \ln \frac{\lambda}{2}+4 \ln \xi + 2 \frac {\lambda}{\xi} \right ]$
     32* $\phi(\xi,\lambda) = \exp \left [ -\frac{\lambda}{\xi} \left (\xi - 1 \right ) - \frac{1}{2} \psi(\xi,\lambda) \right ]$
     33* $v_s(r) = \sqrt{\psi(\frac{r}{R_s}, \lambda_s)}c_s$
     34* $P_s(r)=\frac{\rho_s T_s k_B}{m_H} \phi \left ( \frac{r}{R_s}, \lambda_s \right )$
     35* $\rho_s(r)=\rho_s \phi \left ( \frac{r}{R_s}, \lambda_s \right )$
     36* $v_p(r) = \sqrt{\psi(\frac{r}{R_p}, \lambda_p)}c_p$
     37* $P_p(r)=\frac{\rho_p T_p k_B}{m_H} \phi \left ( \frac{r}{R_p}, \lambda_p \right )$
     38* $\rho_p(r)=\rho_p \phi \left ( \frac{r}{R_p}, \lambda_p \right )$
     39
     40
     41* $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$
     42
     43
     44Time and length symmetry allows us to fix the total mass and separation without loss of generality.  In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality.  So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction
     45
     46$q$, $\chi$, $\xi_p$, $\xi_s$, $\lambda_p$, $\lambda_s$
     47
     48where $\xi_p=R_p/a$ and $\xi_s=R_s/a$
     49
     50
     51Now instead of those 6, we may want to define
     52
     53|| $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius ||
     54|| $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius ||
     55|| $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius ||
     56|| $\xi_{\Omega}=\frac{r_\Omega}{a}$ || Ratio of centrifugal radius to orbital radius ||
     57|| $\chi_{bow}$ || Density ratio at bow shock. ||
     58|| $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius ||
     59
     60This then allows us to calculate
     61
     62|| $q=\frac{\xi_H^3}{3}$ ||
     63|| $\xi_p=\xi_p$ ||
     64||
     65
     66
    2367
    2468