Changes between Version 26 and Version 27 of GravoTurbulence
- Timestamp:
- 11/30/11 17:34:46 (13 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
GravoTurbulence
v26 v27 362 362 [[latex($\overline{\rho_p}=f \overline{\rho_c} + (1-f)\rho_p$)]] - volume weighted mean density 363 363 364 [[latex($\frac{\rho_ p}{\rho_c} = \chi$)]] - definition364 [[latex($\frac{\rho_c}{\rho_p} = \chi$)]] - definition 365 365 366 366 [[latex($r_p=c_s\sqrt{\frac{\pi}{G\overline{\rho_p}}}$)]] - jeans criterion … … 371 371 If we are given [[latex($r_p$)]], [[latex($n$)]], [[latex($\chi$)]] and [[latex($\xi_c$)]] we can solve for the other quantities... 372 372 373 [[latex($r_c=\sqrt{\frac{f\overline{\rho_c}+ (1-f)\chi \rho_c}{\overline{\rho_c}}}r_p = \sqrt{f+(1-f)\chi \xi_c}r_p = \sqrt{A f+B}r_p$)]] where [[latex($B=\chi\xi_c\mbox{ and } A=1-B$)]]373 [[latex($r_c=\sqrt{\frac{f\overline{\rho_c}+\frac{1-f}{\chi} \rho_c}{\overline{\rho_c}}}r_p = \sqrt{f+\frac{1-f}{\chi} \xi_c}r_p = \sqrt{A f+B}r_p$)]] where [[latex($B=\frac{\xi_c}{\chi} \mbox{ and } A=1-B$)]] 374 374 375 375 [[latex($f=n\left(\frac{r_c}{r_p}\right)^3=n \left(A f + B \right) ^{3/2}$)]] … … 377 377 which gives a cubic for [[latex($f$)]] 378 378 379 [[latex($f^2=n^2(Af+B)^3=n^2(A f^3+3A^2f^2B+3AfB^2+B^3)$)]]379 [[latex($f^2=n^2(Af+B)^3=n^2(A^3f^3+3A^2f^2B+3AfB^2+B^3)$)]] 380 380 381 381 or 382 382 383 [[latex($n^2A f^3+(3n^2A^2B-1)f^2+3n^2AB^2f+n^2B^3$)]]383 [[latex($n^2A^3f^3+(3n^2A^2B-1)f^2+3n^2AB^2f+n^2B^3$)]] 384 384 385 385 Consider the trivial case of [[latex($n=1$)]] child clump with the same density [[latex($\chi=1$)]] … … 392 392 393 393 [[latex($-f^3+5f^2-12f+8=0$)]] 394 395 Surprisingly this cubic has no real positive roots! To see why consider the radius ratio of the isolated parent and child clump. From the Jeans relation, the child clump radius should be .7071 and it would occupy 35% of the volume. This would then give a mean parent density of 2*.35+.65 = 1.35 that will require the parent radius be shrunk. This however will only increase the mean density so the solution is stuck between shrinking the parent cloud to smaller and smaller radii is too high. To lower the mean parent density we can increase the radius of the parentTo increase the mean parent density we need to If we include this additional contribution to the parent clump, the parent clump radius would shrink and the child clump would occupy even more then 35% of the volume. On the other hand since the ratio of 394 396 395 397