| 144 | |
| 145 | |
| 146 | |
| 147 | |
| 148 | |
| 149 | |
| 150 | |
| 151 | |
| 152 | |
| 153 | |
| 154 | |
| 155 | |
| 156 | |
| 157 | |
| 158 | |
| 159 | |
| 160 | |
| 161 | |
| 162 | |
| 163 | |
| 164 | |
| 165 | |
| 166 | |
| 167 | |
| 168 | |
| 169 | |
| 170 | |
| 171 | |
| 172 | |
| 173 | |
| 174 | |
| 175 | |
| 176 | |
| 177 | |
| 178 | |
| 179 | |
| 180 | |
| 181 | |
| 182 | |
| 183 | |
| 184 | |
| 185 | |
| 186 | |
| 187 | |
| 188 | |
| 189 | |
| 190 | |
| 191 | |
| 192 | |
| 193 | |
| 194 | |
| 195 | |
| 196 | |
| 197 | |
| 198 | |
| 199 | |
| 200 | |
| 201 | |
| 202 | |
| 203 | |
| 204 | |
| 205 | |
| 206 | |
| 207 | |
| 208 | |
| 209 | |
| 210 | |
| 211 | |
| 212 | |
| 213 | |
| 214 | |
| 215 | |
| 216 | |
| 217 | |
| 218 | |
| 219 | |
| 220 | |
| 221 | |
| 222 | |
| 223 | |
| 224 | |
| 225 | |
| 226 | |
| 227 | |
| 228 | |
| 229 | |
| 230 | |
| 231 | |
| 232 | |
| 233 | |
| 234 | |
| 235 | |
| 236 | |
| 237 | |
| 238 | |
| 239 | |
| 240 | |
| 241 | |
| 242 | |
| 243 | |
| 244 | |
| 245 | |
| 246 | |
| 247 | |
| 248 | |
| 249 | |
| 250 | |
| 251 | |
| 252 | |
| 253 | |
| 254 | |
| 255 | |
| 256 | |
| 257 | |
| 258 | |
| 259 | |
| 260 | |
| 261 | |
| 262 | |
| 263 | |
| 264 | |
| 265 | |
| 266 | |
| 267 | |
| 268 | |
| 269 | |
| 270 | |
| 271 | |
| 272 | |
| 273 | |
| 274 | |
| 275 | |
| 276 | |
| 277 | |
| 278 | |
| 279 | |
| 280 | |
| 281 | |
| 282 | |
| 283 | |
| 284 | |
| 285 | |
| 286 | |
| 287 | |
| 288 | |
| 289 | |
| 290 | |
| 291 | |
| 292 | |
| 293 | |
| 294 | |
| 295 | |
| 296 | |
| 297 | |
| 298 | |
| 299 | |
| 300 | |
| 301 | |
| 302 | |
| 303 | |
| 304 | |
| 305 | |
| 306 | |
| 307 | |
| 308 | |
| 309 | |
| 310 | |
| 311 | |
| 312 | |
| 313 | |
| 314 | |
| 315 | |
| 316 | |
| 317 | |
| 318 | |
| 319 | |
| 320 | |
| 321 | |
| 322 | |
| 323 | |
| 324 | |
| 325 | |
| 326 | |
| 327 | |
| 328 | |
| 329 | |
| 330 | |
| 331 | |
| 332 | |
| 333 | |
| 334 | |
| 335 | |
| 336 | |
| 337 | |
| 338 | |
| 339 | |
| 340 | |
| 341 | == Clumplets == |
| 342 | |
| 343 | An alternative is to put create a heirarch of clumps of uniform density each with a radius and mean density that puts them in approximate virial equilibrium... |
| 344 | |
| 345 | || [[latex($r_p$)]] || radius of parent clump || |
| 346 | || [[latex($\rho_p$)]] || nominal density of parent clump (not including contributions from children) || |
| 347 | || [[latex($\overline{\rho_p}$)]] || mean density of parent clump || |
| 348 | || [[latex($r_c$)]] || radius of child clump || |
| 349 | || [[latex($\rho_c$)]] || nominal radius of child clump (not including contributions from its children) || |
| 350 | || [[latex($\overline{\rho_c}$)]] || mean density of child clump || |
| 351 | || [[latex($f$)]] || volume filling fraction |
| 352 | || [[latex($\chi$)]] || nominal density contrast || |
| 353 | || [[latex($n$)]] || number of child clumps || |
| 354 | || [[latex($\xi_c$)]] || ratio of child nominal density to child mean density || |
| 355 | |
| 356 | These 10 quantities are related by the following 6 equations. |
| 357 | |
| 358 | [[latex($n \left(\frac{r_c}{r_p} \right)^{3} = f$)]] - from geometry |
| 359 | |
| 360 | [[latex($\frac{\overline{\rho_c}}{ \overline{\rho_p} }=\left( \frac{r_p}{r_c} \right)^2 $)]] - from jeans length scaling |
| 361 | |
| 362 | [[latex($\overline{\rho_p}=f \overline{\rho_c} + (1-f)\rho_p$)]] - volume weighted mean density |
| 363 | |
| 364 | [[latex($\frac{\rho_p}{\rho_c} = \chi$)]] - definition |
| 365 | |
| 366 | [[latex($r_p=c_s\sqrt{\frac{\pi}{G\overline{\rho_p}}}$)]] - jeans criterion |
| 367 | |
| 368 | [[latex($\frac{\rho_c}{\overline{\rho_c}}=\xi_c$)]] |
| 369 | |
| 370 | |
| 371 | If we are given [[latex($r_p$)]], [[latex($n$)]], [[latex($\chi$)]] and [[latex($\xi_c$)]] we can solve for the other quantities... |
| 372 | |
| 373 | [[latex($r_c=\sqrt{\frac{f\overline{\rho_c}+(1-f)\chi \rho_c}{\overline{\rho_c}}}r_p = \sqrt{f+(1-f)\chi \xi_c}r_p = \sqrt{A f+B}r_p$)]] where [[latex($B=\chi\xi_c \mbox{ and } A=1-B$)]] |
| 374 | |
| 375 | [[latex($f=n\left(\frac{r_c}{r_p}\right)^3=n \left(A f + B \right) ^{3/2}$)]] |
| 376 | |
| 377 | which gives a cubic for [[latex($f$)]] |
| 378 | |
| 379 | [[latex($f^2=n^2(Af+B)^3=n^2(Af^3+3A^2f^2B+3AfB^2+B^3)$)]] |
| 380 | |
| 381 | or |
| 382 | |
| 383 | [[latex($n^2Af^3+(3n^2A^2B-1)f^2+3n^2AB^2f+n^2B^3$)]] |
| 384 | |
| 385 | Consider the trivial case of [[latex($n=1$)]] child clump with the same density [[latex($\chi=1$)]] |
| 386 | |
| 387 | We then have [[latex($B=1$)]] and [[latex($A=0$)]] and the cubic becomes: |
| 388 | |
| 389 | [[latex($-f^2+1=0$)]] and we recover correctly that [[latex($f=1$)]] |
| 390 | |
| 391 | What if we now have [[latex($n=1$)]] clump with a density contrast [[latex($\chi=2$)]] ? [[latex($B=2$)]] and [[latex($A=-1$)]] and the cubic becomes: |
| 392 | |
| 393 | [[latex($-f^3+5f^2-12f+8=0$)]] |
| 394 | |
| 395 | |
| 396 | If we have multiple levels |
| 397 | |
| 398 | - Highest level of clump has no children so mean density is nominal density. |