| | 105 | |
| | 106 | and for 2D the matrix coefficients would be |
| | 107 | |
| | 108 | || [[latex(1+\alpha^n_{i+1/2,j}+\alpha^n_{i-1/2,j}+\alpha^n_{i,j+1/2}+\alpha^n_{i,j-1/2}+\epsilon^n_i )]] || [[latex(E^{n+1}_{i,j})]] || |
| | 109 | || [[latex(-\alpha^n_{i-1/2,j})]] || [[latex(E^{n+1}_{i-1,j})]] || |
| | 110 | || [[latex(-\alpha^n_{i+1/2,j})]] || [[latex(E^{n+1}_{i+1,j})]] || |
| | 111 | || [[latex(-\alpha^n_{i,j-1/2})]] || [[latex(E^{n+1}_{i,j-1})]] || |
| | 112 | || [[latex(-\alpha^n_{i,j+1/2})]] || [[latex(E^{n+1}_{i,j+1})]] || |
| | 113 | |
| | 114 | and the source term would be unchanged from 1D |
| | 115 | |
| | 116 | || [[latex(E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]] |