Changes between Version 36 and Version 37 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/21/13 10:50:16 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v36 v37  
    11[[PageOutline()]]
    2 [[latex(\exp(x))]]
    3 [[latex(exp(x))]]
    42
    53Most of what follows is taken from [http://adsabs.harvard.edu/abs/2007ApJ...667..626K Krumholz et al. 2007]
     
    197195Now since the second equation has no spatial dependence, we can solve it for
    198196   [[latex(e^{n+1}_i = \frac{1}{ 1 +\psi \phi^n_i}\left \{ \left ( \psi \epsilon^n_i \right )E^{n+1}_i + \left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n \right \} )]]   
     197
    199198and plug the result into the first equation to get a matrix equation involving only one variable.
    200199
    201    [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i-\frac{\phi^n_i \psi \epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}
    202 =
    203 
    204 \left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i +\frac{\psi \phi^n_i}{ 1 +\psi \phi^n_i}\left ( \bar{\psi} \epsilon^n_i \right ) E^n_i
    205 
    206 + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i}  e^n_i
    207 
    208 + \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n
    209 
    210 )]]   
     200   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i-\frac{\phi^n_i \psi \epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2}  -\frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i}  e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n)]]   
    211201
    212202