Changes between Version 203 and Version 204 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/22/14 12:48:05 (11 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v203 v204  
    398398
    399399[[CollapsibleEnd()]]
     400[[CollapsibleStart(Tightly Coupled Simplifications)]]
     401If we plug the expressions for the radiation 4-momentum back into the gas equations and keep terms necessary to maintain accuracy we get:
     402
     403  [[latex($\frac{\partial }{\partial t} \left(\rho\mathbf{v}\right)+\nabla\cdot\left(\rho\mathbf{vv}\right)=\nabla  P\color{green}{-\lambda \nabla E}$)]]
     404   
     405  [[latex($\frac{\partial e}{\partial t}+\nabla\cdot\left[\left(e+P\right)\mathbf{v}\right]=\color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{green}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1\right)\mathbf{v}\cdot\nabla E}\color{blue}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}$)]]
     406
     407  [[latex($\frac{\partial E}{\partial t}  \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}=\color{red}{\kappa_{0P} (4 \pi B-cE)} \color{green}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1\right)\mathbf{v}\cdot \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E\right )}\color{blue}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}  $)]] 
     408
     409
     410Now if
     411
     412[[latex($E=a_RT^4=a_R\left(\frac{e}{\rho c_v}\right)^4$)]]
     413
     414and
     415
     416[[latex($e=\rho c_v T=\rho c_v \left(\frac{E}{a_R}\right)^{1/4}$)]]
     417
     418and we just consider the implicit terms, we can combine the gas and radiation diffusion equations to arrive at:
     419
     420  [[latex($\frac{\partial \left (e+E\right) }{\partial t}=\color{red}{ \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]]
     421
     422which simplifies to
     423
     424[[latex($\left(1+\frac{\rho c_v}{4 E}\left(\frac{E}{a_R}\right )^{1/4}\right) \frac{\partial E}{\partial t}= \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E$)]]
     425
     426or
     427
     428[[latex($\left(1+\frac{e}{4E}\right) \frac{\partial E}{\partial t}= \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E$)]]
     429
     430
     431The second term in parenthesis represents the extra 'inertia' the radiation field has due to its coupling with the gas.  It is non-linear and this limits the time step that can be taken.
     432
     433[[latex($\Delta t \approx \frac{E}{\frac{\partial E}{\partial t}} = \frac{E+\frac{e}{4}}{\nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]]
     434
     435== Changes to the discretization ==
     436
     437For the coupled system of equations we had the following:
     438
     439 [[latex($\color{purple}{\left [ 1 + \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \frac{\epsilon_i}{ 1 +\psi \phi_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2}  +\frac{\epsilon_i }{ 1 +\psi \phi_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} + \frac{\theta_i}{ 1 +\psi \phi_i}}$)]]   
     440
     441If the gas and radiation are in thermal equilibrium, then we have [[latex($\theta_i = \epsilon_i E_i$)]] and we also have that in the limit that [[latex($\kappa_P \rightarrow \infty$)]], we have [[latex($\epsilon \rightarrow \infty$)]] and [[latex($\phi \rightarrow \infty $)]]
     442
     443This simplifies the above equation to
     444
     445  [[latex($\color{purple}{\left [ \left(1 + \frac{\epsilon_i}{\phi_i} \right) +  \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} \right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ \left(1 + \frac{\epsilon_i}{\phi_i}\right) - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2}  \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} }$)]]   
     446
     447And [[latex($\frac{\epsilon_i}{\phi_i} = \frac{\frac{T_i}{4\Gamma}}{E_i} = \frac{\frac{T_i}{4\frac{\partial T}{\partial e}}}{E_i} $)]] which if we use our equation of state where [[latex($e \propto T$)]] gives  [[latex($\frac{\epsilon_i}{\phi_i} = \frac{e_i}{4E_i}$)]]
     448
     449Now if we go back and calculate [[latex($\frac{\partial e}{\partial E} = \frac{\partial e}{\partial T}\frac{\partial T}{\partial E} = \frac{\frac{1}{\Gamma}}{\frac{4 E}{T}}$)]] we arrive at [[latex($\frac{\epsilon_i}{\phi_i}$)]] instead of [[latex($\frac{e_i}{4E_i}$)]] which is consistent with our derivation above.
     450
     451Also our time equation should be
     452
     453[[latex($\Delta t \approx \frac{E}{\frac{\partial E}{\partial t}} = \frac{E+\frac{T_i}{4\Gamma}}{\nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]]
     454
     455
     456So in principle combining the gas and energy equations in the limit that of high planck opacity, does not change the matrix or rhs vector, however it does limit the ability for there to be strong source terms on the right in regions where the gas and radiation have gotten out of equilibrium.  It is not clear how this effects the ability of the elliptic solver to converge to given tolerances.
     457
     458[[CollapsibleEnd()]]
     459
     460[[CollapsibleStart(Modifications to time steps)]]
     461
     462More importantly is the recognition of the time scales over which the internal energy can change.
     463
     464Previously we looked at the decoupled equation for the gas energy density
     465
     466[[latex($\frac{\partial e}{\partial t}=-\kappa_{0P}(4 \pi B-cE)$)]]
     467
     468[[latex($\Delta e = \Delta t \kappa_{0P} \left | 4 \pi B_0 -cE \right | < \xi \frac{T_0}{4 \Gamma}$)]]
     469
     470which gives [[latex($\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left | 4 \pi B_0 - cE \right | }$)]]
     471
     472however, if the gas is in equilibrium with the radiation, this does not limit the time step at all - even though diffusion may quickly move the gas out of equilibrium with the radiation.
     473
     474We can account for this by expanding our equation
     475
     476 [[latex($\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left | 4 \pi B_0 - c\left(E_0+\partial_tE\Delta t\right ) \right | }$)]] which gives us a quadratic for [[latex($\Delta t$)]]
     477
     478 [[latex($4 \Gamma \kappa_{0P} c \left | \partial_tE \right |  \Delta t^2 +  \left(4 \Gamma \kappa_{0P} \left | 4 \pi B_0 - cE_0 \right | \right ) \Delta t < \xi T_0 $)]]
     479
     480where we have conservatively assumed that the diffusion always causes the gas to be more out of equilibrium.
     481
     482Now if we recognize that there are three time scales at play here:
     483
     484|| Diffusion Time || [[latex($\tau_D=\frac{T}{4 \Gamma  \left | \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E \right | }$)]] ||
     485|| Coupling Time || [[latex($\tau_C=\frac{T}{ 4 \Gamma \kappa_{0P} \left |4 \pi B_0-cE \right |}$)]] ||
     486|| Absorption Time || [[latex($\tau_A=\frac{1}{c \kappa_{0P}}$)]] ||
     487
     488then this quadratic simplifies to
     489
     490[[latex($\frac{\Delta t^2}{\tau_A\tau_D} + \frac{\Delta t}{\tau_C} < \xi$)]]
     491
     492[[latex($\Delta t = \sqrt{\left ( \frac{\tau_A \tau_D}{2\tau_C}\right)^2+ \xi{\tau_D\tau_A}}-\frac{\tau_A \tau_D}{2\tau_C} $)]]
     493
     494[[latex($\Delta t = \frac{\tau_A \tau_D}{2\tau_C}  \left ( \sqrt{1+ \frac{4\xi \tau_C^2}{\tau_D\tau_A}} - 1 \right) $)]]
     495
     496
     497So we can choose
     498 * the diffusion time if we assume the gas and radiation are strongly coupled - optically thick,
     499 * the coupling time if we assume that the gas is optically thin (which should imply the radiation is fairly diffused)
     500 * Or we can solve the quadratic
     501[[CollapsibleEnd()]]
     502
     503
    400504
    401505[[CollapsibleStart(Alternative Splitting Method)]]
     
    663767[[CollapsibleEnd()]]
    664768[[CollapsibleEnd()]]
    665