About: About blog posts
Browse by time:
- July 2022 (1)
- May 2022 (1)
- April 2022 (3)
- March 2022 (2)
- February 2022 (3)
- January 2022 (2)
- December 2021 (4)
- November 2021 (2)
- September 2021 (6)
- August 2021 (1)
- July 2021 (7)
- June 2021 (2)
- May 2021 (5)
- April 2021 (3)
- March 2021 (7)
- February 2021 (5)
- January 2021 (4)
- December 2020 (7)
- November 2020 (12)
- October 2020 (13)
- September 2020 (11)
- August 2020 (14)
- July 2020 (17)
- June 2020 (18)
- May 2020 (12)
- April 2020 (14)
- March 2020 (15)
- February 2020 (13)
- January 2020 (7)
- December 2019 (6)
- November 2019 (11)
- October 2019 (15)
- September 2019 (14)
- August 2019 (4)
- July 2019 (10)
- June 2019 (5)
- May 2019 (8)
- April 2019 (5)
- March 2019 (13)
- February 2019 (5)
- January 2019 (10)
- December 2018 (5)
- November 2018 (9)
- October 2018 (13)
- September 2018 (12)
- August 2018 (6)
- July 2018 (5)
- June 2018 (9)
- May 2018 (5)
- April 2018 (9)
- March 2018 (14)
- February 2018 (16)
- January 2018 (7)
- December 2017 (5)
- November 2017 (8)
- October 2017 (11)
- September 2017 (10)
- August 2017 (9)
- June 2017 (16)
- May 2017 (14)
- April 2017 (6)
- March 2017 (6)
- February 2017 (4)
- January 2017 (11)
- December 2016 (5)
- November 2016 (13)
- October 2016 (7)
- September 2016 (11)
- August 2016 (6)
- July 2016 (19)
- June 2016 (12)
- May 2016 (11)
- April 2016 (11)
- March 2016 (13)
- February 2016 (17)
- January 2016 (10)
- December 2015 (5)
- November 2015 (15)
- October 2015 (19)
- September 2015 (18)
- August 2015 (23)
- July 2015 (32)
- June 2015 (17)
- May 2015 (23)
- April 2015 (28)
- March 2015 (23)
- February 2015 (19)
- January 2015 (17)
- December 2014 (26)
- November 2014 (42)
- October 2014 (33)
- September 2014 (30)
- August 2014 (16)
- July 2014 (27)
- June 2014 (37)
- May 2014 (19)
- April 2014 (14)
- March 2014 (35)
- February 2014 (30)
- January 2014 (28)
- December 2013 (25)
- November 2013 (30)
- October 2013 (41)
- September 2013 (48)
- August 2013 (36)
- July 2013 (44)
- June 2013 (39)
- May 2013 (29)
- April 2013 (36)
- March 2013 (35)
- February 2013 (31)
- January 2013 (48)
- December 2012 (20)
- November 2012 (29)
- October 2012 (48)
- September 2012 (30)
- August 2012 (16)
- July 2012 (32)
- June 2012 (27)
- May 2012 (26)
- April 2012 (25)
- March 2012 (30)
- February 2012 (35)
- January 2012 (25)
- December 2011 (23)
- November 2011 (41)
- October 2011 (31)
- September 2011 (29)
- August 2011 (23)
- July 2011 (24)
- June 2011 (18)
- May 2011 (3)
Browse by author:
- rss Bo Peng (1)
- rss Yisheng (26)
- rss aanand6 (20)
- rss adebrech (151)
- rss afrank (30)
- rss aliao (6)
- rss alipnicky (2)
- rss amyzou (54)
- rss aquillen (1)
- rss blin (18)
- rss bliu (270)
- rss bpeng6 (7)
- rss brockjw (7)
- rss bshroyer (6)
- rss ceh5286 (2)
- rss dnp19 (7)
- rss ehansen (290)
- rss elambrid (12)
- rss erica (280)
- rss esavitch (43)
- rss fschmidt (35)
- rss gguidarelli (4)
- rss idilernia (35)
- rss johannjc (245)
- rss lchamandy (104)
- rss likuntian (5)
- rss lsabin (2)
- rss madams (61)
- rss martinhe (76)
- rss mblank (30)
- rss mccann (3)
- rss mehr (16)
- rss noyesma (6)
- rss rmarkwic (20)
- rss shuleli (146)
- rss smurugan (24)
- rss yirak (4)
- rss ytlee (1)
- rss zchen (165)
Browse by category:
- rss Accretion (1)
- rss Bonner-Ebert (1)
- rss Bvn (1)
- rss CollidingFlows (27)
- rss Disks (1)
- rss FieldLoop (1)
- rss Magnetic-tower (1)
- rss Meeting-outline (1)
- rss RAID (1)
- rss RT (1)
- rss Resistive_MHD (1)
- rss Test (1)
- rss alfalfa (3)
- rss animation (1)
- rss bamboo (2)
- rss bipolar (1)
- rss bluehive2 (1)
- rss bluestreak (3)
- rss cameraobjects (6)
- rss clover (1)
- rss clump (4)
- rss cooling (1)
- rss data-management (4)
- rss development (1)
- rss disks (3)
- rss documentation (15)
- rss dust (32)
- rss gpu (1)
- rss grass (2)
- rss hydrostatic (1)
- rss mGlobal (1)
- rss magnetic-field (1)
- rss mass (2)
- rss movies (1)
- rss mx (1)
- rss nebula (1)
- rss notification (1)
- rss others-research (1)
- rss outreach (1)
- rss parameter (1)
- rss plugins (1)
- rss query (1)
- rss scaling (1)
- rss script (1)
- rss shape (3)
- rss sinks (1)
- rss stampede (2)
- rss streamlines (2)
- rss study (1)
- rss tasks (7)
- rss testing (6)
- rss ticketchart (1)
- rss tutorial (1)
- rss visit (4)
- rss visualization (3)
- rss vnc (1)
- rss vpn (3)
- rss w00t (1)
- rss wind (4)
- rss wind-capture (1)
Meeting update for 07/08/2013
So Marshak boundary conditions are mixed
\left . \left ( E-\frac{2}{3\kappa}\nabla{E} \right ) \right |_0 = \frac{4}{c} F
One could instead do
E=\frac{4}{c}F
or
\frac{c}{3\kappa} \nabla E = F
so that
\frac{\partial E}{\partial t} = \nabla \cdot \left ( \frac{c}{3\kappa} \nabla E \right ) = \nabla \cdot F
In any even, if we discretize this mixed equation we get (E_g is ghost zone, E_i is internal zone at left edge)
E_g + E_i - \frac{4}{3\kappa \Delta x} \left ( E_i - E_g \right ) = \frac{8}{c} F
which we can solve for E_g as
E_g = \frac{\left ( 1 - \frac{3\kappa \Delta x}{4} \right ) E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}
and we have E_g - E_i = \frac{\left ( -\frac{6\kappa \Delta x}{4} \right ) E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}
If we then plug this into the time evolution equation ignoring portions that are unchanged we get:
E^{n+1}_i-E^{n}_i = \alpha \left ( E_g^*-E_i^* \right )
where \alpha = \frac{c \Delta t}{3 \kappa \Delta x^2} we get
E^{n+1}_i-E^{n}_i = \alpha \left ( \frac{-\frac{6\kappa \Delta x}{4} E_i^* + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}} \right )
where E^* = \psi E^{n+1} + \bar{\psi} E^n is the time averaged energy and depends on the time stepping (crank-nicholson or forward euler)
and finally we arrive at
\left ( 1+\frac{2 \psi \alpha}{1+\frac{4}{3\kappa\Delta x}} \right ) E^{n+1}_i = \left ( 1-\frac{2 \bar{\psi} \alpha}{1+\frac{4}{3\kappa\Delta x}} \right ) E^{n}_i+ \frac{\frac{8\alpha}{c} F}{1+\frac{4}{3\kappa \Delta x}} This is very similar to what we normally get ie
\left ( 1+\psi \alpha \right ) E^{n+1}_i - \psi \alpha E^{n+1}_g = \left ( 1-\bar{\psi} \alpha \right ) E^{n}_i + \bar{\psi} \alpha E^{n}_g
and noting that \alpha = \frac{c \Delta t}{3 \kappa \Delta x^2} for the limiter \lambda=1/3
or flux is just
F \frac{\Delta t}{\Delta x} \rightarrow F \frac{\Delta t}{\Delta x} \frac{2}{1+\frac{3\kappa\Delta x}{4}}
Note that E^{n+1}_i = E^{n}_i for
E = \frac{4F}{c}
and that if 3 \kappa \Delta x = 4 we revert to what we would expect if there was no Radiation energy in the ghost zone.
- Posted: 11 years ago (Updated: 11 years ago)
- Author: Jonathan
- Categories: (none)
Attachments (1)
- Screen Shot 2013-08-12 at 3.28.26 PM.png (136.8 KB) - added by Jonathan 11 years ago.
Download all attachments as: .zip
Comments
No comments.