meeting update

I have been reading loads of great papers and trying to absorb all the equations, methods, etc. I am currently working on putting together a written summary of what I have been learning which will lead into the research project I have been pondering. I plan on working on that for tonight and maybe tomorrow. As I have posted, my figure for my BE collapse is not quite the same as the B&P run at later times. Qualitatively it looks correct. I am thinking about equations that would be relevant in determining a predicted core density for the collapse. This has not been clearly presented in the literature. After my summary, maybe tomorrow or next, I want to work through some calculations to let me better understand my B&P output. This is the first step I'd like to take— fully understanding the B&P setup I have run— both relevant collapse calculations and the numerics. Likely, this should have been the other way— equations first, sim second :)

In other news, I will be moving to BH ASAP to run calculations. I have been running a sim on bamboo for days now (sorry guys)to check the density I have gotten from my restarts (when it begins to deviate from B&P's results), just as a sanity check. I hear new revision is out so will try compiling it on BH tonight.

I'd like to calculate the expected time on my simulation to compare with how long it has been taking in bamboo. I think I remember there is a toy calculation somewhere on the wiki on how to do this..

Lastly, I think the B&P set up is slightly different than my run. Not outlined in the section I have been focusing (the isothermal collapse section), but in previous sections, B&P says all runs have angular velocity, and on top of 10% over density there is another density perturbation given by the azimuthal angle. I would like to a) determine an expected density for MY collapse setup and compare to my results and b) determine how the rotation would be expected to alter the density profiles I have found. This seems a cleaner way to compare my results, rather than re run the sim but with the rotation. .

Comments

1. Erica Kaminski -- 13 years ago

Also, B&P used an effective EOS that incorporated molecular line cooling. They say the collapse is in the isothermal regime up until ~ n ~ 107.5cm-3. My set up used an ideal EOS with gamma = 1.0001.