Blog: Setting Atmosphere Density: theoretical_opt_depth.nb

File theoretical_opt_depth.nb, 12.0 KB (added by adebrech, 7 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 11.1' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 158, 7]
13NotebookDataLength[ 12162, 292]
14NotebookOptionsPosition[ 11154, 261]
15NotebookOutlinePosition[ 11519, 277]
16CellTagsIndexPosition[ 11476, 274]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21Cell[BoxData[{
22 RowBox[{
23 RowBox[{"\[Sigma]H", "=",
24 RowBox[{"6.3", "*",
25 SuperscriptBox["10",
26 RowBox[{"-", "18"}]]}]}], ";"}], "\[IndentingNewLine]",
27 RowBox[{
28 RowBox[{"\[Alpha]Rec", "=",
29 RowBox[{"2.59", "*",
30 SuperscriptBox["10",
31 RowBox[{"-", "13"}]]}]}], ";"}], "\[IndentingNewLine]",
32 RowBox[{
33 RowBox[{"Rp", "=",
34 RowBox[{"1.5", "*",
35 SuperscriptBox["10", "10"]}]}], ";"}], "\[IndentingNewLine]",
36 RowBox[{
37 RowBox[{"k", "=",
38 RowBox[{"1.381", "*",
39 SuperscriptBox["10",
40 RowBox[{"-", "16"}]]}]}], ";"}], "\[IndentingNewLine]",
41 RowBox[{
42 RowBox[{"mH", "=",
43 RowBox[{"1.673", "*",
44 SuperscriptBox["10",
45 RowBox[{"-", "24"}]]}]}], ";"}], "\[IndentingNewLine]",
46 RowBox[{
47 RowBox[{"G", "=",
48 RowBox[{"6.67", "*",
49 SuperscriptBox["10",
50 RowBox[{"-", "8"}]]}]}], ";"}], "\[IndentingNewLine]",
51 RowBox[{
52 RowBox[{"MJ", "=",
53 RowBox[{"1.898", "*",
54 SuperscriptBox["10", "30"]}]}], ";"}], "\[IndentingNewLine]",
55 RowBox[{
56 RowBox[{"\[Gamma]", "=",
57 FractionBox["5", "3"]}], ";"}], "\[IndentingNewLine]",
58 RowBox[{
59 RowBox[{"Mp", "=",
60 RowBox[{"0.263", "MJ"}]}], ";"}], "\[IndentingNewLine]",
61 RowBox[{
62 RowBox[{"Tp", "=",
63 RowBox[{"3", "*",
64 SuperscriptBox["10", "3"]}]}], ";"}], "\[IndentingNewLine]",
65 RowBox[{
66 RowBox[{"csp", "=",
67 FractionBox[
68 RowBox[{"k", " ", "Tp"}], "mH"]}], ";"}], "\[IndentingNewLine]",
69 RowBox[{
70 RowBox[{"Rcrit", "=",
71 FractionBox[
72 RowBox[{
73 RowBox[{"(",
74 RowBox[{"\[Gamma]", "-", "1"}], ")"}], "G", " ", "Mp"}],
75 RowBox[{"\[Gamma]", " ",
76 SuperscriptBox["csp", "2"], "Rp"}]]}], ";"}], "\[IndentingNewLine]",
77 RowBox[{
78 RowBox[{"R0", "=",
79 FractionBox["Rcrit",
80 RowBox[{"Rcrit", "-", "1"}]]}], ";"}]}], "Input",
81 CellChangeTimes->{{3.713258846511506*^9, 3.713258939851328*^9}, {
82 3.7132590823904333`*^9, 3.713259126478526*^9}, {3.713259175948367*^9,
83 3.713259192038424*^9}, {3.713259223154564*^9, 3.713259226710137*^9}, {
84 3.713259283745267*^9, 3.7132593106941233`*^9}, {3.713520754920622*^9,
85 3.713520757575594*^9}, {3.7135208004449463`*^9, 3.713520866144994*^9}, {
86 3.713520953852779*^9, 3.7135209655016537`*^9}, {3.713521867250255*^9,
87 3.713521868976025*^9}, {3.71352190023104*^9, 3.713521900973702*^9}, {
88 3.713522196478245*^9, 3.713522248221025*^9}, {3.7135226077012987`*^9,
89 3.7135226248555613`*^9}, {3.7135235310986347`*^9, 3.713523559665166*^9}, {
90 3.713615204688394*^9, 3.713615247162218*^9}, {3.713615325930789*^9,
91 3.7136153583084517`*^9}, {3.713615402955405*^9, 3.713615408176056*^9}, {
92 3.713615474619404*^9, 3.713615553893057*^9}, {3.7136324946782503`*^9,
93 3.7136325289198837`*^9}, {3.7136335496534*^9, 3.713633553984888*^9}, {
94 3.713633602255455*^9, 3.713633602374426*^9}, {3.713633788040331*^9,
95 3.713633788534278*^9}, {3.713693377788597*^9, 3.713693418352685*^9}, {
96 3.7136934974407682`*^9, 3.713693502440379*^9}, {3.71369585042238*^9,
97 3.7136958621256723`*^9}, {3.7136962372383823`*^9, 3.71369625172823*^9}, {
98 3.713699909675071*^9, 3.713699911321764*^9}, {3.713705145967136*^9,
99 3.713705146765848*^9}, {3.713705272059846*^9, 3.713705389130068*^9}, {
100 3.7137054560770063`*^9, 3.7137054590863457`*^9}, {3.713707127878566*^9,
101 3.713707195361743*^9}, 3.713707239591943*^9, 3.713707647051476*^9, {
102 3.713707678231587*^9, 3.713707769699853*^9}, {3.7137079350929337`*^9,
103 3.713707990644376*^9}, {3.713708077620658*^9, 3.7137082291922073`*^9}, {
104 3.713708262381814*^9, 3.713708397505809*^9}, {3.7137086769693527`*^9,
105 3.713708678181336*^9}, {3.713708731659623*^9, 3.7137087637420473`*^9}, {
106 3.7137088432272243`*^9, 3.713708846434181*^9}, {3.713708880202011*^9,
107 3.713708903074548*^9}, {3.713716330266464*^9, 3.713716351175259*^9}, {
108 3.713716434540206*^9, 3.713716525606535*^9}, {3.713716611280066*^9,
109 3.713716646483315*^9}, {3.71371670304727*^9, 3.7137167087341948`*^9}, {
110 3.713716769507305*^9, 3.7137169073458242`*^9}, {3.7137221741594687`*^9,
111 3.713722287147996*^9}, {3.713722317414308*^9, 3.71372256217129*^9}, {
112 3.7137226062439938`*^9, 3.713722633168475*^9}, {3.713722962911133*^9,
113 3.713722973892164*^9}, {3.713723004049493*^9, 3.713723007056541*^9}, {
114 3.7137230748638363`*^9, 3.713723204412738*^9}, {3.713723352532102*^9,
115 3.713723352853589*^9}, {3.7137234296575212`*^9, 3.713723433512855*^9}, {
116 3.713723670492765*^9, 3.713723686101622*^9}, {3.7137237981056843`*^9,
117 3.713723799313353*^9}, {3.713724456612514*^9, 3.713724459841893*^9}, {
118 3.713785021813044*^9, 3.7137850320829763`*^9}, {3.713785506067985*^9,
119 3.713785533348872*^9}, {3.7137856004003353`*^9, 3.7137856533672657`*^9}, {
120 3.713785685385323*^9, 3.7137857186268377`*^9}, {3.71378582659606*^9,
121 3.713786076938623*^9}, {3.7137861087900457`*^9, 3.713786217248049*^9}, {
122 3.713786289465934*^9, 3.7137863597071877`*^9}, {3.713786442650681*^9,
123 3.713786485443578*^9}, 3.713786723240041*^9, {3.713791026836248*^9,
124 3.713791051116667*^9}, {3.7137916305626907`*^9, 3.713791661098472*^9}, {
125 3.713875993628359*^9, 3.713875996727685*^9}, {3.71387605653726*^9,
126 3.71387606768277*^9}, {3.7138762462463713`*^9, 3.713876297245927*^9}, {
127 3.7138763645880938`*^9, 3.713876373787952*^9}, {3.719769462788966*^9,
128 3.719769479461725*^9}, {3.719779982018424*^9,
129 3.71978000235341*^9}},ExpressionUUID->"b4c69657-d995-4434-b55e-\
130daa81ba4c880"],
131
132Cell[BoxData[{
133 RowBox[{
134 RowBox[{"nH", "[", "r_", "]"}], ":=",
135 RowBox[{"np",
136 SuperscriptBox[
137 RowBox[{"(",
138 RowBox[{"Rcrit",
139 RowBox[{"(",
140 RowBox[{
141 FractionBox["1", "r"], "-",
142 FractionBox["1", "R0"]}], ")"}]}], ")"}],
143 FractionBox["1",
144 RowBox[{"\[Gamma]", "-", "1"}]]]}]}], "\[IndentingNewLine]",
145 RowBox[{
146 RowBox[{"RecombinationRate", "[",
147 RowBox[{"X_", ",", "r_"}], "]"}], ":=",
148 RowBox[{
149 SuperscriptBox[
150 RowBox[{"(",
151 RowBox[{"X", " ",
152 RowBox[{"nH", "[", "r", "]"}]}], ")"}], "2"],
153 "\[Alpha]Rec"}]}], "\[IndentingNewLine]",
154 RowBox[{
155 RowBox[{"Recombinations", "[",
156 RowBox[{"X_", ",", "r_"}], "]"}], ":=",
157 RowBox[{"Integrate", "[",
158 RowBox[{
159 RowBox[{"RecombinationRate", "[",
160 RowBox[{"X", ",", "rad"}], "]"}], ",",
161 RowBox[{"{",
162 RowBox[{"rad", ",", "R0", ",", "r"}], "}"}]}], "]"}]}]}], "Input",
163 CellChangeTimes->{{3.719770413879026*^9, 3.719770448893592*^9}, {
164 3.719770498941699*^9, 3.719770523531096*^9}, {3.719771053714438*^9,
165 3.719771141347056*^9}, {3.7197712049182663`*^9, 3.719771251650033*^9}, {
166 3.719771305058453*^9, 3.719771312629652*^9}, {3.719775117811722*^9,
167 3.7197751925947742`*^9}, {3.719775669484964*^9, 3.7197756698144836`*^9},
168 3.7197763673380423`*^9, {3.7197764354685926`*^9, 3.719776444389744*^9}, {
169 3.7197765238362427`*^9, 3.719776523901249*^9}, {3.719776584805292*^9,
170 3.719776586371373*^9}, {3.719777043123604*^9, 3.719777056942843*^9}, {
171 3.7197773728657293`*^9, 3.719777373903077*^9}, {3.719779957489173*^9,
172 3.719779967842348*^9}, {3.7197799995901127`*^9,
173 3.719780008656363*^9}},ExpressionUUID->"d95f3241-03ca-4e7b-af1f-\
17487cd0551260c"],
175
176Cell[CellGroupData[{
177
178Cell[BoxData[{
179 RowBox[{
180 RowBox[{"PossibleAbsorptions", "=", "photonFlux"}],
181 ";"}], "\[IndentingNewLine]",
182 RowBox[{
183 RowBox[{"soln", "=",
184 RowBox[{"Solve", "[",
185 RowBox[{
186 RowBox[{"PossibleAbsorptions", "\[Equal]",
187 RowBox[{"Recombinations", "[",
188 RowBox[{"1", ",", "Rp"}], "]"}]}], ",", "np"}], "]"}]}],
189 ";"}], "\[IndentingNewLine]",
190 RowBox[{"\[Rho]p", "=",
191 RowBox[{
192 RowBox[{"mH", " ", "np"}], "/.",
193 RowBox[{"soln", "[",
194 RowBox[{"[", "2", "]"}], "]"}]}]}]}], "Input",
195 CellChangeTimes->{{3.719775520568548*^9, 3.719775538580059*^9}, {
196 3.719776463371714*^9, 3.719776485724725*^9}, {3.719776591008328*^9,
197 3.719776599839645*^9}, {3.71977686647449*^9, 3.719776911158575*^9}, {
198 3.719776947244884*^9, 3.71977697527099*^9}, {3.719777059004896*^9,
199 3.7197771486414127`*^9}, {3.7197771855758457`*^9, 3.719777191441033*^9}, {
200 3.719777260215287*^9, 3.7197773764891376`*^9}, {3.719779480834425*^9,
201 3.719779519408044*^9}, {3.719779687767662*^9, 3.719779692585054*^9}, {
202 3.719779729509191*^9, 3.719779783120728*^9}, {3.719780044647661*^9,
203 3.719780081417156*^9}},ExpressionUUID->"23ce3386-9e06-438c-b851-\
204a4c403eb20e7"],
205
206Cell[BoxData[
207 TemplateBox[{
208 "Solve","ratnz",
209 "\"Solve was unable to solve the system with inexact coefficients. The \
210answer was obtained by solving a corresponding exact system and numericizing \
211the result.\"",2,437,18,24374291181571580553,"Local"},
212 "MessageTemplate"]], "Message", "MSG",
213 CellChangeTimes->{
214 3.7197797883144093`*^9, {3.7197800431170387`*^9,
215 3.7197801033794127`*^9}},ExpressionUUID->"90ebc89b-7ee1-446d-ab3f-\
2167e3027033252"],
217
218Cell[BoxData[
219 RowBox[{
220 RowBox[{"(",
221 RowBox[{"2.6841107374256084`*^-23", "+",
222 RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
223 SqrtBox["photonFlux"]}]], "Output",
224 CellChangeTimes->{
225 3.7197755281132174`*^9, 3.719776487215723*^9, 3.719776535191061*^9,
226 3.7197766001367207`*^9, 3.719776867481805*^9, {3.719776907973813*^9,
227 3.719776911701095*^9}, {3.719776952938533*^9, 3.71977697585966*^9}, {
228 3.719777067015581*^9, 3.7197771497245693`*^9}, {3.719777187862468*^9,
229 3.7197771918271437`*^9}, {3.719777267696289*^9, 3.719777297955077*^9}, {
230 3.719777329236869*^9, 3.719777401967024*^9}, {3.7197794858909607`*^9,
231 3.719779519842195*^9}, 3.71977969309369*^9, {3.719779734224107*^9,
232 3.719779788266069*^9}, {3.7197800430721407`*^9,
233 3.719780103386981*^9}},ExpressionUUID->"ea40c4a2-74a6-44ff-bf9d-\
23457abf5374b6f"]
235}, Open ]],
236
237Cell[CellGroupData[{
238
239Cell[BoxData[{
240 RowBox[{
241 RowBox[{"photonFlux", "=",
242 RowBox[{"2", "*",
243 SuperscriptBox["10", "13"]}]}],
244 ";"}], "\[IndentingNewLine]", "\[Rho]p", "\[IndentingNewLine]",
245 RowBox[{"Clear", "[", "photonFlux", "]"}]}], "Input",
246 CellChangeTimes->{{3.7197769212645407`*^9, 3.719776930403502*^9},
247 3.719777293371935*^9, {3.7197796992266703`*^9, 3.7197797196658573`*^9}, {
248 3.719779775140098*^9, 3.719779801344612*^9}, {3.7197800849709272`*^9,
249 3.719780090210125*^9}},ExpressionUUID->"21f226d3-b2bf-4941-9664-\
2502e6bb9a845b4"],
251
252Cell[BoxData[
253 RowBox[{"1.20037081360415`*^-16", "+",
254 RowBox[{"0.`", " ", "\[ImaginaryI]"}]}]], "Output",
255 CellChangeTimes->{
256 3.719776930710595*^9, {3.719779700614073*^9, 3.71977972020547*^9}, {
257 3.7197797738772373`*^9, 3.7197798022631083`*^9}, {3.719780086327663*^9,
258 3.719780103408482*^9}},ExpressionUUID->"a4a87d52-5f92-435e-a87a-\
259fd379cf860e8"]
260}, Open ]]
261},
262WindowSize->{960, 1028},
263WindowMargins->{{Automatic, 0}, {-5, Automatic}},
264Magnification:>1.5 Inherited,
265FrontEndVersion->"11.1 for Linux x86 (64-bit) (April 18, 2017)",
266StyleDefinitions->"Default.nb"
267]
268(* End of Notebook Content *)
269
270(* Internal cache information *)
271(*CellTagsOutline
272CellTagsIndex->{}
273*)
274(*CellTagsIndex
275CellTagsIndex->{}
276*)
277(*NotebookFileOutline
278Notebook[{
279Cell[558, 20, 5409, 109, 575, "Input", "ExpressionUUID" -> \
280"b4c69657-d995-4434-b55e-daa81ba4c880"],
281Cell[5970, 131, 1719, 42, 184, "Input", "ExpressionUUID" -> \
282"d95f3241-03ca-4e7b-af1f-87cd0551260c"],
283Cell[CellGroupData[{
284Cell[7714, 177, 1177, 26, 149, "Input", "ExpressionUUID" -> \
285"23ce3386-9e06-438c-b851-a4c403eb20e7"],
286Cell[8894, 205, 456, 10, 88, "Message", "ExpressionUUID" -> \
287"90ebc89b-7ee1-446d-ab3f-7e3027033252"],
288Cell[9353, 217, 848, 16, 84, "Output", "ExpressionUUID" -> \
289"ea40c4a2-74a6-44ff-bf9d-57abf5374b6f"]
290}, Open ]],
291Cell[CellGroupData[{
292Cell[10238, 238, 538, 11, 116, "Input", "ExpressionUUID" -> \
293"21f226d3-b2bf-4941-9664-2e6bb9a845b4"],
294Cell[10779, 251, 359, 7, 71, "Output", "ExpressionUUID" -> \
295"a4a87d52-5f92-435e-a87a-fd379cf860e8"]
296}, Open ]]
297}
298]
299*)
300