Blog: Update 9/30: Uniform B field.nb

File Uniform B field.nb, 114.0 KB (added by adebrech, 5 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 11.3' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 158, 7]
13NotebookDataLength[ 116558, 2910]
14NotebookOptionsPosition[ 112951, 2850]
15NotebookOutlinePosition[ 113285, 2865]
16CellTagsIndexPosition[ 113242, 2862]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21
22Cell[CellGroupData[{
23Cell[BoxData[{
24 RowBox[{"Clear", "[",
25 RowBox[{"B0", ",", "Rp", ",", "x", ",", "y", ",", "z"}],
26 "]"}], "\[IndentingNewLine]",
27 RowBox[{
28 RowBox[{"r", "[",
29 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
30 SqrtBox[
31 RowBox[{
32 SuperscriptBox["x", "2"], "+",
33 SuperscriptBox["y", "2"], "+",
34 SuperscriptBox["z", "2"]}]]}], "\[IndentingNewLine]",
35 RowBox[{
36 RowBox[{"\[Theta]", "[",
37 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
38 RowBox[{"ArcCos", "[",
39 FractionBox["x",
40 RowBox[{"r", "[",
41 RowBox[{"x", ",", "y", ",", "z"}], "]"}]],
42 "]"}]}], "\[IndentingNewLine]",
43 RowBox[{
44 RowBox[{"\[Phi]", "[",
45 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
46 RowBox[{"ArcTan", "[",
47 RowBox[{"z", ",", "y"}], "]"}]}], "\[IndentingNewLine]",
48 RowBox[{
49 RowBox[{"rhat", "[",
50 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
51 RowBox[{"{",
52 RowBox[{
53 RowBox[{"Cos", "[",
54 RowBox[{"\[Theta]", "[",
55 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}], ",",
56 RowBox[{
57 RowBox[{"Sin", "[",
58 RowBox[{"\[Theta]", "[",
59 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
60 RowBox[{"Sin", "[",
61 RowBox[{"\[Phi]", "[",
62 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], ",",
63 RowBox[{
64 RowBox[{"Sin", "[",
65 RowBox[{"\[Theta]", "[",
66 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
67 RowBox[{"Cos", "[",
68 RowBox[{"\[Phi]", "[",
69 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}],
70 "}"}]}], "\[IndentingNewLine]",
71 RowBox[{
72 RowBox[{"thetahat", "[",
73 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
74 RowBox[{"{",
75 RowBox[{
76 RowBox[{"-",
77 RowBox[{"Sin", "[",
78 RowBox[{"\[Theta]", "[",
79 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], ",",
80 RowBox[{
81 RowBox[{"Cos", "[",
82 RowBox[{"\[Theta]", "[",
83 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
84 RowBox[{"Sin", "[",
85 RowBox[{"\[Phi]", "[",
86 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], ",",
87 RowBox[{
88 RowBox[{"Cos", "[",
89 RowBox[{"\[Theta]", "[",
90 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
91 RowBox[{"Cos", "[",
92 RowBox[{"\[Phi]", "[",
93 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}],
94 "}"}]}], "\[IndentingNewLine]",
95 RowBox[{
96 RowBox[{"B", "[",
97 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
98 RowBox[{
99 RowBox[{"B0", " ",
100 RowBox[{"Cos", "[",
101 RowBox[{"\[Theta]", "[",
102 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
103 RowBox[{"(",
104 RowBox[{"1", "-",
105 SuperscriptBox[
106 RowBox[{"(",
107 FractionBox["Rp",
108 RowBox[{"r", "[",
109 RowBox[{"x", ",", "y", ",", "z"}], "]"}]], ")"}], "3"]}], ")"}],
110 "*",
111 RowBox[{"rhat", "[",
112 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "-",
113 RowBox[{"B0", " ",
114 RowBox[{"Sin", "[",
115 RowBox[{"\[Theta]", "[",
116 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
117 RowBox[{"(",
118 RowBox[{"1", "+",
119 RowBox[{
120 FractionBox["1", "2"],
121 SuperscriptBox[
122 RowBox[{"(",
123 FractionBox["Rp",
124 RowBox[{"r", "[",
125 RowBox[{"x", ",", "y", ",", "z"}], "]"}]], ")"}], "3"]}]}], ")"}],
126 "*",
127 RowBox[{"thetahat", "[",
128 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]}]}], "\[IndentingNewLine]",
129 RowBox[{
130 RowBox[{"Rp", "=", "1"}], ";"}], "\[IndentingNewLine]",
131 RowBox[{
132 RowBox[{"B0", "=", "1"}], ";"}], "\[IndentingNewLine]",
133 RowBox[{
134 RowBox[{"dist", "=", "1"}], ";"}], "\[IndentingNewLine]",
135 RowBox[{"SliceVectorPlot3D", "[",
136 RowBox[{
137 RowBox[{"Which", "[",
138 RowBox[{
139 RowBox[{
140 SqrtBox[
141 RowBox[{
142 SuperscriptBox["x", "2"], "+",
143 SuperscriptBox["y", "2"], "+",
144 SuperscriptBox["z", "2"]}]], ">", "Rp"}], ",",
145 RowBox[{"B", "[",
146 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", "True", ",",
147 RowBox[{"{",
148 RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}], ",",
149 RowBox[{"{",
150 RowBox[{"\"\<XStackedPlanes\>\"", ",",
151 RowBox[{"{", "0", "}"}]}], "}"}], ",",
152 RowBox[{"{",
153 RowBox[{"x", ",",
154 RowBox[{"-", "dist"}], ",", "dist"}], "}"}], ",",
155 RowBox[{"{",
156 RowBox[{"y", ",",
157 RowBox[{"-", "dist"}], ",", "dist"}], "}"}], ",",
158 RowBox[{"{",
159 RowBox[{"z", ",",
160 RowBox[{"-", "dist"}], ",", "dist"}], "}"}], ",",
161 RowBox[{"AxesLabel", "\[Rule]",
162 RowBox[{"{",
163 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]}], "Input",
164 CellChangeTimes->{{3.7779902342169333`*^9, 3.777990238695693*^9}, {
165 3.777990311623564*^9, 3.7779905165632544`*^9}, {3.777990590287731*^9,
166 3.7779907746903877`*^9}, {3.7779908070107393`*^9,
167 3.7779908095310373`*^9}, {3.7779909932782793`*^9, 3.777990996507094*^9}, {
168 3.7779918243105288`*^9, 3.7779918278428183`*^9}, {3.7779918901523952`*^9,
169 3.777991894316737*^9}, {3.7779920646349783`*^9, 3.7779921186942663`*^9}, {
170 3.7779921959145823`*^9, 3.777992288324809*^9}, {3.777992329162949*^9,
171 3.77799239976514*^9}, {3.7779924652507067`*^9, 3.7779924698671217`*^9}, {
172 3.777992511240218*^9, 3.777992517196198*^9}, {3.777992576912552*^9,
173 3.777992589087886*^9}, {3.777992641628994*^9, 3.7779926710035048`*^9}, {
174 3.777992733208252*^9, 3.7779927399206953`*^9}, {3.77799285754652*^9,
175 3.7779928704648438`*^9}, {3.777992961785528*^9, 3.77799303704978*^9}, {
176 3.777993756692831*^9, 3.777993879528089*^9}, {3.777993926708218*^9,
177 3.777993940837818*^9}, {3.777994013176084*^9, 3.777994014867951*^9}, {
178 3.7779940536971207`*^9, 3.777994171983581*^9}, {3.777994204426085*^9,
179 3.7779942192273283`*^9}, 3.777994249270389*^9, {3.777994318571772*^9,
180 3.7779944075172663`*^9}, {3.7779947118338413`*^9, 3.77799474009453*^9}, {
181 3.777994775390664*^9, 3.777994777097485*^9}, {3.777995167170287*^9,
182 3.777995199562211*^9}, {3.77799573874475*^9, 3.777995780186953*^9}, {
183 3.77799645996728*^9, 3.777996613011126*^9}, {3.777997588934968*^9,
184 3.7779975895251493`*^9}, {3.777997723457263*^9, 3.777997733099078*^9}},
185 CellLabel->
186 "In[472]:=",ExpressionUUID->"06180fe6-75b2-4ab2-94a0-dcf9f2263c9a"],
187
188Cell[BoxData[
189 Graphics3DBox[{{{},
190 {RGBColor[0.2947336, 0.4054232, 0.5678384000000001],
191 {Arrowheads[{{0.033693221101741264`, 1.}}, Appearance -> "Projected"],
192 Arrow3DBox[{{-0.1573612866178168, -0.8182350985461903, \
193-0.8182350985461903}, {
194 0.15887114278576175`, -0.8181283040512122, -0.8181283040512122}}]},
195 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
196 Arrow3DBox[{{-0.17245011297537613`, -0.8182742665346528, \
197-0.6364355406380633}, {
198 0.1739599691433211, -0.8180891360627497, -0.6362915502710276}}]},
199 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
200 Arrow3DBox[{{-0.17245011297537613`, -0.8182742665346528,
201 0.6364355406380633}, {0.1739599691433211, -0.8180891360627497,
202 0.6362915502710276}}]},
203 {Arrowheads[{{0.033693221101741264`, 1.}}, Appearance -> "Projected"],
204 Arrow3DBox[{{-0.1573612866178168, -0.8182350985461903,
205 0.8182350985461903}, {0.15887114278576175`, -0.8181283040512122,
206 0.8181283040512122}}]},
207 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
208 Arrow3DBox[{{-0.17245011297537613`, -0.6364355406380633, \
209-0.8182742665346528}, {
210 0.1739599691433211, -0.6362915502710276, -0.8180891360627497}}]},
211 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
212 Arrow3DBox[{{-0.17245011297537613`, -0.6364355406380633,
213 0.8182742665346528}, {0.1739599691433211, -0.6362915502710276,
214 0.8180891360627497}}]},
215 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
216 Arrow3DBox[{{-0.17245011297537613`,
217 0.6364355406380633, -0.8182742665346528}, {0.1739599691433211,
218 0.6362915502710276, -0.8180891360627497}}]},
219 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
220 Arrow3DBox[{{-0.17245011297537613`, 0.6364355406380633,
221 0.8182742665346528}, {0.1739599691433211, 0.6362915502710276,
222 0.8180891360627497}}]},
223 {Arrowheads[{{0.033693221101741264`, 1.}}, Appearance -> "Projected"],
224 Arrow3DBox[{{-0.1573612866178168,
225 0.8182350985461903, -0.8182350985461903}, {0.15887114278576175`,
226 0.8181283040512122, -0.8181283040512122}}]},
227 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
228 Arrow3DBox[{{-0.17245011297537613`,
229 0.8182742665346528, -0.6364355406380633}, {0.1739599691433211,
230 0.8180891360627497, -0.6362915502710276}}]},
231 {Arrowheads[{{0.03690852596827003, 1.}}, Appearance -> "Projected"],
232 Arrow3DBox[{{-0.17245011297537613`, 0.8182742665346528,
233 0.6364355406380633}, {0.1739599691433211, 0.8180891360627497,
234 0.6362915502710276}}]},
235 {Arrowheads[{{0.033693221101741264`, 1.}}, Appearance -> "Projected"],
236 Arrow3DBox[{{-0.1573612866178168, 0.8182350985461903,
237 0.8182350985461903}, {0.15887114278576175`, 0.8181283040512122,
238 0.8181283040512122}}]}}}, GraphicsComplex3DBox[CompressedData["
2391:eJx13H3o72ddx/HfzXZmZuJGaUzEDt4hScxyqEOaG6hBkmP+EWiohKPIYfNg
240MiXJIwl2Y+1EEjMQI/IPUeYdCqmctcAdSdxkBznlyY6HNU9jN+oWLFkePfB5
241XuDj7e8v2ZMnr99r7+/ltYuL6/s9/Lt/eP0Nezs7O9dctLOz/+P/3XnKrV+/
2424Q2vvvrky448enTvoat/ePu195w///Bx+YePHfnh8y55aPHNG35cv5xrfv/7
243b7n70APDl1+/93tX/tbeAyM/bn7cnP7uvb9+5N9vPnT/+Lvy/Pf/wvdfefjQ
244ueHL+7vmxPW/dufr33H53v3j3yvuv1fcf69Xf+C6z9+3e27kxM2Jm1O+/eP2
245L0c/rt88X/DA2z77lYvvG/OU5991x/cOH7n43uHLm7M5cf3yj9z6tr++/OKz
246I1+e/9Sbvvf4HRedGb68v2tOXL852z9u/+asH9cvxz5x+5SjH9c/cf0rHvv0
2477n1jHcZdh3HX4St/8aqX/snuvSMnbk7cnPJdn3HXZzn6cf07/vNX3vWbu2dH
248z7g94/Z8+T8+6wtP2z0zcuLmxM0p3/5x+5ejH9dvbq63uOutuenH9ctxvcVd
249b+Xox/Wbg33i9mkO+nH9cuwTt085+nH99p+3f+DsyW884fTYf+T5/3zV2due
25094RTw5e3L5kT1y9/59y3//zmS06OfHn+b3zw2zd85dDdw5f3d82J67eP2T9u
251//Yx/bh+OfaJ26cc/bh+8/ml991x9EVPOjHmI8//+H/9y4u/8cTbhy9vbubE
2529cu/6e3v/ebDl31y5MvXerjl+Udf9WtXzPUA7++asz53/OZs/7j9m7N+XL8c
253+6zPnT7l6K/PHb99zPUWd721j+nH9ctxvcVdb+Xox/Xbx+wTt0/7mH5cvxz7
254xO1Tjn5cvzm4HuKuh+agH9cvx/WwPhfWQzn663PBbw72idunOejH9cuxz/pc
2556FOO/vpc8G/++hWP3bl7epxz4p5z4p5zbvqdy9/1pt1TIyduTtyc8j3/xD3/
256lKMf17/xO/uPP7ZzcvSM2zNuzzcfefDdx3buHjlxc+LmlG//uP3L0Y/rNzfP
257S3HPS81NP65fjueluOelcvTj+s3BPnH7NAf9uH459onbpxz9uP7tP/jE+dfu
258nBjrJO46ibtO3nR475Innj8+cuLmxM0p3/UTd/2Uox/X/8iHrnvGqR/cNnrG
2597Rm3587Ln/7lj975lOPmxM2Jm1O+/eP2L0c/rt/cXG9x11tz04/rl+N6i7ve
260ytGP6zcH+8Tt0xz04/rl2Cdun3L04/rtM55n4p5n2mf04/rleJ6Je54pRz+u
2613z5jn7h92mf04/rl2Cdun3L04/rNwfNM3PNMc9CP65fjeWZ9LpxnytFfnwt+
262c7BP3D7NQT+uX4591udCn3L01+eC3z7geoi7HtoH9OP65bge4q6HcvTj+u0D
2639onbp31AP65fjn3i9ilHP67fHFwPcddDc9CP65fjelifC+uhHP31ueA3B/vE
2647dMc9OP65dhnfS70KUd/fS743W985NqdWy/77x/nbbz7DXn+FTcePfOK/z0+
265fHn3HubE9cu/5fXXXLX7+J0jX77uZ3av/dM3/v9dw5f3d81Z9zP43ZPYP27/
2667kn04/rl2Gfdz9CnHP11P4PffF7y2sPfecP5e8Z85PmP/tPhJz1559Tw5c3N
267nLj+ut977PALv7RzeuTL8z/9nEt/+XM7Z4YvX/d+5MT1m7P94/Zvzvpx/XWP
268R5+4fdY9Hn5cv3sY11vc9dY9jH5cvxzX27r/Yb2Vo7/uf/C7h7FP3D7dw+jH
2699cuxz7r/oU85+uv+B785uB7irofmoB/XX/d4rIe462Hd4+HH9ZuDfeL2aQ76
270cf11j0efuH3WPR5+XL/94cmvOfaln7vwebI/yPP/4OZLr7vhwnrEl7dvmBPX
271L//EPxw7+8UL//8gX57/7H+79I9+fu/c8OX9XXPi+u0z9o/bv31GP65fjn3i
2729ilHP67ffN7z6LFLbrzw30PmI8//1jMu+9C/XvjvOb68uZkT1y//qlf9zQue
273vv/QyJfz7mj48v6uObwXGnO2f9z+zVk/rl+OfXjnM3L0ec8z9jHXW9z11j6m
274H9cvx/UWd72Vox/Xbx+zT9w+7WP6cf1y7BO3Tzn6cf3m4HqIux6ag35cvxzX
275A+9qRo4+72fGHOwTt09z0I/rl2Mf3smMHH3ewyzePYznmbjnme5h9OP65Xie
276Wfc/nGfK0V/3P/jdw9gnbp/uYfTj+uXYZ93/0Kcc/XX/g98cPM/EPc80B/24
277/rrH4zwT9zyz7vHw4/rNwT5x+zQH/bj+usejT9w+6x4PP67fPYzrIe566B5G
278P65fjuth3f+wHsrRX/c/+N3D2Cdun+5h9OP65dhn3f/Qpxz9df+D3xxcD3HX
279Q3PQj+uvezzWQ9z1sO7x8OP6zcE+cfs0B/24/rrHo0/cPuseDz+u3z7geSDu
280eaB9QD+uX47ngbjngXL04/rtA/aJ26d9QD+uX4594vYpRz+u3xw8D8Q9DzQH
281/bh+OZ4HeDcycvR5HzLmYJ+4fZqDfly/HPvwDmTk6PPeY+wDroe466F9QD+u
282X47rIe56KEc/rt8+YJ+4fdoH9OP65dgnbp9y9OP6zcH1EHc9NAf9uH45rgfe
283dYwcfd5vjDnYJ26f5qAf1y/HPrzTGDn6vMdY/NzrfvbsXRd/crzTiPtOI+47
284jff83a8++Ln920dO3Jy4OeX7fiPu+41y9OP6f3n0jf/zvotOjJ5xe8bt+dUr
285v3zkY3t3j5y4OXFzyrd/3P7l6Mf1m5vvPeK+92hu+nH9cnzvEfe9Rzn6cf3m
286YJ+4fZqDfly/HPvE7VOOfnx8v+Bjp7976f7JsU7i43t8G3ed/MczH3nrO/dP
287jZy4OfHxfb0tf3wvb+Oun3L04/pn/vZnHjyzf3r0jNszbs9HLrrlymfvnRk5
288cXPi5pRv/7j9y9GPj+/fbXMb37PbuOutuenHx/fptpzxvbmNu97K0Y/rNwf7
289xO3THPTj+uXYJ26fcvTj+u0zvieJ+56kfUY/rl+O70nivicpRz+u3z5jn7h9
2902mf04/rl2Cdun3L04/rNwfckcd+TNAf9uH45vidZnwvvScrRX58LfnOwT9w+
291zUE/rl+OfdbnQp9y9Nfn4vuZbR8Y31PbuOuhfUA/Pr6PtuWM751t3PVQjn5c
292v33APnH7tA/ox/XLsU/cPuXox8f3y7Y5jO+Rbdz10Bz04+P7YlvO+F5Ynwvr
293oRz99bngNwf7xO3THPTj+uXYZ30u9ClHf30u+O+4+u8f/e29s+OcEPecEPec
2948H/v/Ohn/mLv3pETNyduTvmeH+KeH8rRj+v/8Wc/deT43n2jZ9ye8fE+/+Ev
295vvCRvXPzff7Gx/v8jZtTvv3j433+ljPe529cv7l53oh73mhu+nH9cjxvxD1v
296lKMf128O9omP9/nbHMb7/I3rl2Of+Hifv+WM9/kb13/v809897n79491Ened
297xF0nh958z22v239g5MTNiZtTvusn7vopRz+u/2cf/tZb/2r/odEzbs/4Ab+7
298MnL65wN+72XklG//+AG/ozL8uH5zc73FXW/NTT+uX47rLe56K0c/rt8c7BM/
2994HdOhh/XL8c+8QN+t2T4cf32Gc8zcc8z7TP6cf1yPM/EPc+Uox/Xb5+xT3y8
300/9/2mfH+f+P65dgnPt7/bznj/f/G9ZuD55m455nmoB/XL8fzzPpcOM+Uo78+
301F/zmYJ/4eP+/zWG8/9+4fjn2WZ+L7/+3nPH+v88Fv33A9RB3PbQP6Mf1y3E9
302xF0P5ejH9dsH7BM/4HdChh/XL8c+8QN+92P4cf3m4HqIux6ag35cvxzXw/pc
303WA/l6K/PBb852Cd+wO94DD+uX4591ufy03+XY/jrc8HvHsP3GHHfY3SPoR/X
304L8f3GOv+hPcY5eiv+xP87jHsE7dP9xj6cf1y7LPuT+hTjv66P8FvDr7HiPse
305oznox/XXPRjvMeK+x1j3YPhx/eZgn7h9moN+XH/dg9Enbp91D4YfH+/nt3uM
3068T2vjbseusfQj4/vc20543tb3Z+wHsrRX/cn+N1j2Cdun+4x9OP65dhn3Z/Q
307pxz9dX/i97O2OYzvYW3c9dAc9OPj+1bdg/m9qo27HtY9GH5cvznYJ26f5qAf
30811/3YPSJ22fdg+HH9dsHfI8R9z1G+4B+XL8c32PEfY9Rjn5cv33APnH7tA/o
309x/XLsU/cPuXox/Wbg+8x4r7HaA76cf1yfI/Bu4uRo8/7ijEH+8Tt0xz04/rl
3102Id3FCNHn/cSYx8Y35PauOuhfUA/Pr4PteWM7z1t3PVQjn5cv33APnH7tA/o
311x/XLsU/cPuXox8f3m7Y5jO8xbdz10Bz04+P7SlvO+F7ST76LGDn6vH8Yc7BP
3123D7NQT+uX459eOcwcvR5z7B49wCeB+KeB7oH0I/rl+N5YN0/cB4oR3/dP+B3
313D2Cf+Hh/vt0DjPfnG9cvxz7r/sH351vOeH/e/QN+c/A8EPc80Bz04/rrHonz
314QNzzwLpHwo/rNwf7xMf7820O4/35xvXXPRJ94uP9efdIvj/fuH73AK6HuOuh
315ewD9uH45rod1/8B6KEd/3T/gdw9gn/gBv1Mx/Lh+OfZZ9w8//Xcnhr/uH/Cb
316g+sh7npoDvpx/XWPxHqIux7WPRJ+XL852Cd+wO9IDD+uv+6R6BM/4Hchhh/X
317bx/wPBD3PNA+oB/XL8fzQNzzQDn6cf32AfvEx/vzbR8Y7883rl+OfeLj/fmW
318M96fb1y/OXgeiHseaA76cf1yPA/wbmHk6PM+YczBPvHx/nybw3h/vnH9cuzD
319O4SRM96f/+R7g7EPuB7irof2Af24fjmuh7jroRz9uH77gH3iB/zOw/Dj+uXY
320J37A7zYMP67fHFwPcddDc9CP65fjeuBdwcjR5/3AmIN94gf8DsPw4/rl2Id3
321AiPngN9nWP6PAB7IpX8=
322 "], {
323 {Hue[0.11, 0.5, 0.7], Opacity[0.7], EdgeForm[None],
324 StyleBox[GraphicsGroup3DBox[
325 TagBox[
326 TagBox[Polygon3DBox[CompressedData["
3271:eJxNmwfYj3Xbx+/7/tvZKyMke2dkbxGSLZKdWUJCsndGZIfslZWnrFDRIJId
328MkJmRJRN6P1+3+tzHf7P8X6O33V8z+95Xudv/K/7cr3Pk71d94bd4mL0n3j/
329/38xccFlTETEiuQiiYgvEjMmiHniTcRob8IoTxhz7lPkWC8o8os8Ip9IKpLh
330sfdpkYL7phepqOPaKYklxWtPWjyOpRHpRGq0tNRITl+pITE17cmAJzW57iub
331yCpyi5ziWfEMuscsIrPIhC8TPaWI8oQx52YnJ9QzM2fnPCdy4LE3I2uQnt5y
332UycFei5ynqW3vHieJjcfc8hNLD++bOgzxHQxRUwTBaiZE289UUvUFHVFSVFC
333PC+KM6ZjbYuIYoyFRdEoTxgrwTzSRelp2SvnvEDfGfBWEqW4b0VRhjquXZrY
334C3jtKY/HsXKigiiLVp4aJenLeiHm7Ln6LFbGU5bcl0V18aKozTrUENXQq7HG
335Xtuq+KrSU6koTxirwX3yRel5mbNzXqKngnirsAYV6a02dUqh1yKnBr3VwVOJ
3363FeYQ21idfFVRy/LWhRjjerjeZnc4WKgGCCGiRaimWgsmjI2EY1EQ/Eqo89k
337rihPGHPua+RY7yv6iHdFb9FcvI7H3jdES+7bTrSiTi72rSU5zfC0wVOAdWwr
338WqO1oUYL+moNTalpT3s8rcl1X2+JN0VP0UN0FZ3RPXYRnURHfB3pqWWUJ4w5
339921yQr0Tc3ZON9Edj70dWIN29NaTOi3R3yGnK731wvMGub2ZQ09iffC9hd6Q
340vcvBnr1HzR54G8QEzwCfCZ+NIWKQ6B8TnIv+rJPXtl9McE48+kzWivKEsUHM
341o22U3oa9cs5g+m6P9wMxlPuOignO4ABq1yM2GK89I/DUo/eRMcEZHkZsFL6B
3426O8zZ8/VZ3E0nuHk+rk4XnwoJouJYoIYhz6ONfbajsU3lp6GRnnC2ATu0ztK
34378WcnfMRPfXFO4Y1GEVvk6kzFH0SORPobSqeD8idxhwmE5uObzz6s/pDnVVk
344FlnEx9SciDebtIwiA76F0uaL2WIeo5+TfrZ+IuYyzhJzojxhzLmVybH+tdgs
345vhSbxIKY4LlVGe9KsSgmuO8KsYQ6rr2Y2AK89izD49inYrlYiraMGgvpaynM
346o6Y9q/AsJdd9fSE+FxvEOrFG/A/do5+TfrauxreanhZFecKYc+uTE+p1mLNz
3471sYE57Y+3s9YgxX0toE6i9DXk7OG3jbiWUnuJuawgdhmfF+gf8LelWPPvqLm
348OrynxTFxVJwSP4pt4lvxA+Ny1nar+J5xi/guyhPGtjGP5VH6MvbKOdvpexXe
349fWIH990rfqKOa+8kth2vPbvxOPaz2CN2oe2mxo/0Zf0b5uy5+izux7OL3BPi
350sDgkjrMOR8Qv6L+wxl7bg/gO0tOOKE8YO8J9NkXpG5mzc36lp6/xHmAN9tLb
351cersQD9GzhF6+w3PPnJPMofjxE7hO4w+Myb4zfu37nfB3/GcIPcp/ebji3gi
352ibgk7aI4Jy4w+jnpZ+tZcZ7RZ3J9lCeMOXc0Odb9D4XHGv4Vj8QfMcFzazTe
3536+JyTHDfa+JP6qxn3y6TcxHPVTxfsY5/iStoV6lxib6uwAVq2vM3nivkuq/b
3544pZ4IO6JO+Imukc/Y/1svYHvBj1djvKEsTus87QofSpzds5d9mQG3n9Yg2v0
3559oA6l9Hvk3OH3h7iuU7uI+bwgNhjfLfRz7J3Ddiz/6h5D++ZmOAZ4DPxu0ik
356/UogIpwLj3+xtnGcE48+kz6boSeMOfdv1jbUr7JXzkkYG/Rtj70pROLY4L7J
357OYOuc4y+HEtIXXuS4jlN78ligzOchFhyfPHRY2ODOT/mLKbE41gy/i6mE2lF
358Jv4Ophdp0D0+Ym1T40tNT4mjPGHMuTHkhPpD9so5T9NTDN5UrEFyestEncTo
359GclJT2/P4ElBbhbmkIlYVnzp0P2c87PQz1Q/I7PHBn/z7fO7wW/iOJpjBUVe
360kVPkYcwlcojnRG5Gv5P6PTL0hDHn5iPHek1RQ1QT1UV+UQCPvcVFIe5bTBSm
361jmv7va0QOXnxPI/HMb9HFdV1EbTnqVGQ3otAHmraUwKP9aL0VU6UFVVFZVFe
362lEb3WEaUEiXxlaSnQlGeMObcCuSEeinm7JyKohIee19gDYrRW1XqFEKvQk55
363ensRT3FyqzOHqsRq4CuH3ll0FG+IDuIlalbG20m0FW3w1Rd1xcviFcairG1t
364UYfR76R+jww9Yawu8ygapTvXe+WcevRdAm9T0YD7vioaUse1/XfLsXp47WmM
36552Oeo0103QitMTXq07v1WszZc/VZbIbHsSasS0vRQrRjHVqJ19FfZ429ts3x
366NaenBlGeMNaK+1SP0l9kzs5pTU818b7GGrxKb+2o0wC9LTmt6K09nqbkdmAO
3677Yh1xNcSvRFrUYc16sKed+RszBaz0BzrJXqIrqI749viLfGm6MboM1klyhPG
368nPsOOdYHiH7iPZ8B0VO8i8fe/qI397WvD3WqsG+9yemBpy+el1jH96ndh1g/
369fN3R3+O6G56B3LMfvX0oxqI5NkwM4p6+9xAxVAxGH442CO8o8YEYKUbASHJC
37032Dm7Jqj8Qyh1ljq9KaHcejDiI3hHiPIHY9nLL1PQB+O/hE5o4m9yd5VYs8m
371oo+j1mTWzWvpczZTfCymixliKh7HfBaniSloU/ENYB+mkDsQbTra+9xjMjVD
3723bXmi7niEzGHcRq1Z8FU7t0pymN9NrkzyLE+jznMIDaJNZnA3Bfgmcu9V4kV
373aI4tF5+KpWKZWCwWMi/XXSIWoS3GN5G1XETuJLSlaOPZq4XUDPUlaB+yZr7H
374SvTF9LWC65n0+BmeFfS+mppL0P/HHJYR899l/+32Nyf/zf4cfSW11sQGz82Z
375vGdu0vWXYoPYKNbhuct743pdr0Vbh8/PrSbozn0NzbEDYp/YK/ZTcwNe1/pW
376bBFfiW8Y11N7M/j6Pu+uocf61+RuJMf61thgDhuJfY3XuX7v+g7PFu69W+xC
377c+wnsUP8KHaKbeJ75uW628UPaNvw+TnaAd25XdB+RHOsPTk7o/TtaO1ZM9/j
378Z/Rt9LWL6030uAfPLnrfS83t6PuYw05ia9mbxuzZfvSfqfW3uCauiL/EMfGr
379OCKOikPiYGzwDup30cPiF7RD+L5l734h9zu0I2jfsA8HqRnqrvW7OCVOiJOM
380h6l9HA5x72xRHuu/kXuUHOunmcNRYge5dyxzOIPnFPe+Kv5Ec+yy+ENcFJfE
381eXGWebnuBXEO7Ty+/azlOXIPoF1E28NenaVmqF9A282a/co+XKD2n3Cee59m
382j66gX2XvLpFj/TpzuETsi9jgmeDfvH/7/+C5xt4/E6d/O8QFmmP3xV1xR9wT
383t8SN2OBc+1zdFjfRbuHzc3QOunMXoDmWSrVTiOQiZVxQ8w5e1/L/4/Cxxn/F
384I8bb1H4At7j3viiP9YexQe49cqz/xxzuEXuIdx/7EhsXeB5z76QiCZpjiUVC
385kUAkEvFEXFwwL9eNr+sIWjx8Xlc/SyPkfsFaJ8DrmJ/VcdQM9fjUWcWa+R5P
386ocejryRc32duyeICTxJ6T07N+OgpmEMiYjfZm9nsWUp0e13rBrEu7HFGaU+L
3879CKDSCtSxwXn2ucqna7ToKXF53X0vqQhNxYtPd5H7ENqaoa6az0rsorMIgtj
388OmpnAl9f5tyGHuvPkJuBHOvZ4oI5ZCDmez5k7z2H7Hiycu+CIj+aY/lEHpFb
3895BU5xXPMy3VziRxoOfGlZC1zkJsKLTdaMvbqOWqGei60pKyZ71EAPSd95ec6
390Iz0WwpOf3gtTMxd6EeaQl9jzjAXILYonjBWPC76b+ltqMV2XRPP1C6KsKC1K
391iFKinCiDVpZrf4f0t8vSeEpQoyQ+x/yt1XoFdNcuL6pSx3kVRWU8jlUSL+Jx
392rApjKWrYV42eyuILPRWo1Vg0FPVEA9FENEJz7KW44Duov53W0HXNuGAsQ906
393oja+WuIV8TJaHa7P8O2sNp6X4p7Uqk6PVZlLXfRy6A2pU4se6+OpRq7ruDev
394cRk8tahRl7m8Qo2GzLEesfr06d48R/fVlHXx2r4qurEOzntLNMfj2GuilWgh
395monXRWvREq0V19WZWws8zajRHO1F9sV6W3TXbiM6Usd57UR7PI69ITrjcawD
3964+vUsK8TPbXCF3raUquv6CPeFb3poQpr0JQ5N2Ct3hRdGVtStwdrZN/b4h3R
397Ha0H101Yw2543oqq1YUeOzKXnuit0ftQ52167IWnE7lv0lt1enoXb1d879FT
398D2r1xtOTWhvFBrFWrBebxJdojvWPC76D+ttpP10PiAtGn2ufqyFiEL6BYqgY
399jDaEa3+H9LfLQXj6xz2pZc0x38P6MHTX9tkdRR3nDRcj8DRiXUfjcWwk40Bq
4002PcBPQ3BF3qGUWuGmC6miGlipvgYzbFxccE3VH87HavrD+OCcTB1J4oJ+MaL
401SeIjtIlc+7upv6VOwDMu7kmtMfQ4irlMRh+KPp064+lxKp4PyHUd9+Y1Hoxn
402PDUmM5dJ1JjOHKcQc633OSM+G/4tzGJdvLY+u6tZB+etFLPxOOZzNV/MFZ+I
403OWKBmIc2n+sxzG0unk+oMRttNPtifSH6O/S1lDrOWyQW43mP3pfhcWwJ4xxq
4042PcpPc3HF3oWUsvn0Gfbz+iX6WEkazCLOU9jrVaIVYzzqPs5a2TfZ+IL8T+0
405z7meyRquxrMyqtZyelzKXNagL0DfQB3n+Te6Ds+n5K6gtzH0tBbvKnxf0tPn
4061FqPZw21fCZ9Nn3GfS6/iguei362bhbpI8FzwHlpdL0Fj2PfiO/Ft+JrsVX8
407IL5D+55rP6c6o23F6xpb0BzrgL4d3bW3iV3Ucd6PYicex3aI3Xgc+4lxKzXs
408+5mevscXerZT6zdxXPwqjomT4gSaY/vigmemn5V7xX7G76h7SBzEd0AcFr+g
409HeLa57Qv2gG8Ya099LiLuRxB/wH9OHUO0ONRPD+Tu5feutDTr3j34ztBT4eo
410dQzPEWodpLfe9HWadfHanhJ3WAfn3RRn8Th2RlwU58Xv4pz4Q1xAu8j1HuZ2
411Hs/v1DiLtpt9sX4Z3bUviWvUcd6f4ioex66Iv/E49hfjOWrYd52eLuILPZep
4125f9i62ON/4pH9PATa3CaOR9jrW6IW4wXqHuPNbLvtrgv7qLd4/oka3gHz82o
413Wv/Q4zXm8gD9D/TH1LlNjw/xXCf3Br3toad/8d7C9x893aPWIzwPqFVZ868o
414yokKkeA36N+inwH+jUYiwTPTz8o4XceLBKPPtc9VIl0niAS++CKxSIiWiGs/
415p/xsS4AnEnlSy5pjS7hXEnTX9tlNTh3nPSWS4jnBuqaMBB7HkjHGp4Z9Kegp
416Eb7Qk4Raz4qsIrPIIrKLbGiO+ZnnZ5+flal1nTYSjAmpmyESPCPtSycyiqfR
417MnDtdyo/Q9PjSRN5UisVPbo3zyUTemL0rNRJR4/P4ElBruu4N69xQjzpqJGJ
418uWSkRlbmmJmYa8VGgjPymN/Cc6zLSc5uSdbBecVFTjx3OVd5dZ1b5BC5RD6R
419By0v16mYW248OaiREy0l+2I9P/p9zm5h6jivgCiIxzH3/nwk8DhWiDEXNewr
420Qk958YWe/NTyOfTZ9jPaZzoHvSSlx+LM3WtVTJRgzEPd0pFgjex7QZQRpdBK
421c52dNSyJp3hUraL0WJi5lEXPh16ROs7zb7Q8niLkFqO3VPRUDm8JfJXoqTS1
422KuApSy3/m9v/9va/8f1v8irk2OtnQ7VI8E3V31Kr6rqWeEnUEDXFi5FA93uu
4233zOrk1OVmH3+juoa1cj1d1RrjrUVrUUr0YaaNajhWvVFXfGyeIWxOrVrg699
424b7/rhh7rdcitSY71esyhJrE6eJ3r97QGeOpy7xaiOZpjr4mm4lXRTDQWDZmX
4256zYRjdAa4/N3VH+XbUTuP3xbfRWvY/5W25Caod6EOo55zXyP19Eb01dzrmvR
426Y0s8zem9FTWboLdmDs2IfSe2ii3iW/agFV7XGiIGif5ioOgiOomOorNoL9pF
427gvdcv2d20PUbaO3x1Wfv3iC3AVpHtFfYh3bUDHXX6iG6ibfE24wdqP0m+Nr3
4289rtu6LHeldzO5Fjvzhw6E2vHvb33nsM7eLpx7wGiH5pj74v3RB/RV/QSPZmX
4296/YW76L1wteGtXyX3LZofdBaslc9qRnqvdFasGad2Ife1O4Hvbh3d/aoP/oA
4309q4vOdYHM4e+xLqyVl47/50aimcQe79KrEBzbIz4QIwSo8UIMSwSnGufq5Fi
431ONoIfP6O6u+yw8n1d1Rrji0Q88RcMZ+ao6jhWhPFBDFOjGccSe2xMIJ7t47y
432WP+Q3NHkWP+IOYwm9iHe1uzLJDwTuPdsMQvNsZniYzFdzBBTxWTm5brTxBS0
433qfj8HdXfVqeQ62+s1qbjdczfaidTM9SnUccxr5nv8Qn6VPqaxfUYepyDZxa9
434z6XmNPR5zGEGMa+z98bfyoexB3PxzmEfHfMzy3u8XHwqloplYrFYGAnOtc/V
435ErEIbTG+iezLInInoS1FG88+LKRmqLvW52K1WCk+Y1xC7RWwmHsPjvJYX0Xu
436MnKs/485LCO2kHu3ZQ5f4FnNvb8Wm9Ec2yS+FBvERrFOrGFerrterEVbh28+
437a7mW3AVoG9DmsFdrqBnq69Fms2a+x1fo6+hrM9fL6fEbPJvpfQs116NvZQ4b
438I0+e+VuIOff7SPBM8LPA767+O+6//f6G5b/x2/A45vfKneJH8YPYLn4SO9B2
439cu3nZg+07XhdYxuaY2+j70J3bb+77qWO834Wu/E45veq/Xgc28O4nRr27aOn
440nfhCzy5q/S5OiRPipDgjTqM59kskeKb6WXpQHGLcQd2j4gi+w+KY+BXtKNd+
441bg5BO4w3rHWAHvcyl+PoP6Gfos5hevwNzz5yD9LbO/R0Au8hfKfp6Si1TuI5
442Tq0j9DaQvs6yLl5bv7veYR2cd1Ocx+OY3ysviYvinLggLos/0C5xfYC5XcRz
443jhrn0fazL9b/RHdtv4deo47zroireBzzu+rfeBz7i/ECNey7Tk+X8IWeP6nl
444/+HqY43/ikf0sIc1OMucT7JWN8Qtxj+oe481su+2uC/uot3j+gxreAfPzaha
445/9DjNebyAP0y+mPq3KbHh3iuk3uD3g7Q0794b+H7j57uUesRngfU8m/Ovz3/
4465v2bjI0X5DxmbSLxgmeqn6Vxuk4sEooEIpH/N8LxAt3n3OcsPjlxxOzzc9Q1
447IuT6OWrNsewim8gqnqVmAmq4VkqRXDwlkjHGp3YS8LXv7bMeeqwnJTcROdZT
448MIdExJLiPc0+pcKTnHs/IzKhOZZRPC3SiwwirUjNvFw3nUiDlhafn7F+tqYh
4491+/c1tLjdczP6tTUDPV01HHMa+Z7ZEZPS1+ZuE5Mj1nwZKL3rNRMh56NOWSI
450WvOsxJz7HGtyhrPrffTe+xnmPc6J5y7nKq+uc4scIpfIJ/Kg5eU6FWuZG08O
451auRES8neWs+Pfp+zW5g6zisgCuL5j7P6fLzA41ghxlzUsK8IPeXFF3ryUysH
452905KT0XJKUzt4qyL17KYKCNKiZKitCiBnof7vEBOMWIlWeMs6M7NjhbWKEnM
453uWXJy0cfxbh3Ku5RHk8Rei1HXgn0Cmhl8VaiZ9+nIpQmx77KaOXIrUJORWL/
454B4L/zU0=
455 "]],
456 Annotation[#, "{}#1"]& ],
457 Annotation[#, "Charting`Private`Tag$109913#1"]& ]],
458 Lighting->{{"Ambient",
459 Hue[0.11, 0.5, 0.7]}, {"Directional",
460 RGBColor[0.42, 0.34859999999999997`, 0.21],
461 ImageScaled[{2, 0, 2}]}, {"Directional",
462 RGBColor[0.42, 0.34859999999999997`, 0.21],
463 ImageScaled[{2, 2, 2}]}, {"Directional",
464 RGBColor[0.42, 0.34859999999999997`, 0.21],
465 ImageScaled[{0, 2, 2}]}}]}, {}, {}, {}, {}},
466 VertexNormals->CompressedData["
4671:eJztyDERwCAABLC/gpFKwQISuGNGIpYqoRNbl+7JmHusPq8krSYlx7PzyXvv
468vffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvv
469vffee++9995777333nvv/d9/AdcMK8w=
470 "]]},
471 Axes->True,
472 AxesLabel->{
473 FormBox["x", TraditionalForm],
474 FormBox["y", TraditionalForm],
475 FormBox["z", TraditionalForm]},
476 BoxRatios->{1, 1, 1},
477 DisplayFunction->Identity,
478 FaceGridsStyle->Automatic,
479 ImageSize->{343.3894724043576, 359.96801607395236`},
480 ImageSizeRaw->Automatic,
481 Lighting->{{"Ambient",
482 Hue[0.11, 0.5, 0.7]}, {"Directional",
483 RGBColor[0.42, 0.34859999999999997`, 0.21],
484 ImageScaled[{2, 0, 2}]}, {"Directional",
485 RGBColor[0.42, 0.34859999999999997`, 0.21],
486 ImageScaled[{2, 2, 2}]}, {"Directional",
487 RGBColor[0.42, 0.34859999999999997`, 0.21],
488 ImageScaled[{0, 2, 2}]}},
489 Method->{"TransparentPolygonMesh" -> True},
490 PlotRange->{{-1, 1}, {-1, 1}, {-1, 1}},
491 PlotRangePadding->Scaled[0.05],
492 Ticks->{Automatic, Automatic, Automatic},
493 ViewPoint->{1.2483565804875412`, 1.982058355151146, 2.441935815030565},
494 ViewVertical->{0.20743050294603135`,
495 0.9750965700200309, -0.07848098867068129}]], "Output",
496 CellChangeTimes->{
497 3.777995169319974*^9, 3.777995199965517*^9, {3.7779957645608797`*^9,
498 3.777995781079484*^9}, {3.777996595531764*^9, 3.777996613975079*^9},
499 3.77799759051123*^9, {3.777997724512512*^9, 3.777997733885108*^9}},
500 CellLabel->"Out[482]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
501eJzFfQuwXtV13q//dR96giRAAoSQQRgjkHiIlwQICb3Q6wohME+94PKwMZIf
502GDvjziXYNcRurx3bTWhSO23d1OOhvuMWhzjOVMQNderM+DZTtyFt8E08bux2
5037Nxhmk5m3MncnvXYa69v33XuS7i9M/9///+c8++11rfWXmvtdfbeZ9+xDz7+
5046FPHPvjEiWOrd77/2MnHnzjxgdU7nn5/dag1r9GYd2/1enx1o119nmg0Jr29
505u9H4RX3+Br93jz322GP/anBwsGKgsaz6/5PqtfD48eO/KVf9Dr+3n3/00Uf/
506fnXlR6r/n6r+/xM5+yq/t75cHRmvfreqejXw1JHq0N9Ur+3VJXiqPVod3lYd
507/k71urL6DBS7Wx5//PF/R+1Vf++o/tPVKyu+jvDpvsueeOKJUT1Nfz1PPfXU
508RPX9/OpnLGTFaKP5H+mK1gminf6uckhcwB8Xlm3NU5Ktw4cPLz927NiPqs9n
509VdfMf+ihh/5b9Xk10Vg/qZ0WtNMWMR6uaL/i2v509fmp6tgMf/5s9f1Tjv1T
5101fcXKtFm+PNnqu+fdtTp55+oXvrzv5JrCStCil6EVVMg9pB2tCES/y+r18fV
511YhqXCvHHqu8vqpYaHSH+QNXs7zjiw9Xn92Ti/53fl9QCXCiCGPt69Zk4WVy9
512RqoXGZcycLAi9o3q5Rkgc6amV1Svs0+cOPEDNVFgoFZDCmFzaGhoXiP/ER//
513uHqtFbqLKpC+mH7dyXj+mYI1WF26AejVqVTpXVF9fJ/KTBp4RVE7Do3UKVYb
5142VQB+BfV19+rGqP/XyB5KkG0Een6vaXe6aBXejM2jzVTq1dYaFFf/V46/ahc
5158srUKvfqpgvrrrt4avUqA9TaX4UMTKfyutNrYvV2RfdvVN/+1r1ueeSRRxrH
516ge40qq87fYK/9Sw5evTohurrQHX4aPX/ZPV/WHtCo8mG36Lz6eeNS4D4NCZT
517d/o+/tZXR/y09rkxZoKCQKNvVI+P6DUn9Tf0fSIxLP2n8SK/L5rOFOv8z4XC
518/NS2WHt6P31pkmiN3iTcSX2VwjnZiP8vVUx62egsNcGN9YgFDqi8407eF/h9
5198Uy6QJ3HS0JPbf+1p+/ICiWKXu6hQu5Gq15o+jyiXHuhCastZPqsQukxGxyO
520dE58duM5+cW9VUuUdfyETYjf26+ptlJXFFfUSj2Rv8mxWge9SmjHvXXS4U18
521uBOh0miSzI1FCZVxp9YImTH9n5ARii36OJ6MsFeODSvoHqyT2mRq7lJvOLU+
522oiWn66LHQ/VKH1b265Q+7HihMwNe6SrbkLbhZTMjyLJxjxgr5KXfDWm7I1le
5235XjOeZ52kjq3pnjVBcpDGS/CimSpxUs8Q++YM4ek14QZtdF0tkC/P4k4tBIt
524/iY5XXtMcUm2A9jMLW+VblHrEgUXjN57EYwyBARgtEswmixta0IdgHcY9NOj
525SW4+1iQq4i+7SXL+RfU3pmhqbLtb2ghcSPc1Jx39JbQ0OawL8opPnfdUfCC5
5262Do1PiOKhQ+RJT4pjHiFJ4BG9Jw3FqKTsmQdinQJWG8Oqd1LvNHMapRxkVxU
527+kpBME54rmMFYkityxdmkC4MFVik8x6LdC1/u0kkSuSSRMm5TI9FncO4Vy4q
528PagYdnuW2cKQXu5Fo+OnCzUnauWx0QSLijuiZpOYTr1GxX1QfjmbQdo+/nbG
529WcKAdtfUbb0QE8klRQ5Q6HM2YQA08zG7bg1IOJtR4DY+vXwmIXG6iE89b4Ma
530OVsih0BOGzQYmgz0d1iOJVzkm7yDfa8BY53JSPNmPrxorjJJotP1IlEzo2q1
531ke568zGT72E5Bv1S5Uv90Mv3Uja1aWOtmNr8scHJcTZxnIQvzYvYMZegxyAO
532P56PDRVsQ+6mbA8j25HXL6LigjGHt3cHnnVqlNgez8YzPOhS6iXZeErOR70X
5330FEwdBYZODc+MT3nGK9kcNkzpiKFbGvnpGPjAcrGw/OBEXWynCaT8vpRept7
534PEmfJ7HbyjBG7CZTbnw6i2WRohPYsrJ7UrA/syjxJS2nAsPtwBLdkMsShC/I
535MQiAneC3yvBgtoUz9fOJZT8wAP/dzViav9Bj4CtUBMh7XHtmSqtFBPGPy94u
536J57IRi5CubDhD/0tyeCa1Xy+XnowcpVAolc7jY4mlMMad5y6mEsFo7zBmPla
537vq60HDBhZOa0RqcJhTJKRt3I1qi9GrTsuBovqD3A7x2SKel2IiHkBLSfvSbH
538km3yt96MttnGRdC89+n2uTc3b9yfzlIOFM2D4rT5+0U80gpRT0AkQVn3/0F+
539bt9dkwCSb7JJDKqLSjbK376TeTZ31Begq43tEv6mHETXVHnF33BBJAGbepf6
540YxTp3wsXqTTE3/oDxazynC2aaghL3+uGsYJNz5Dr02lIZZSaxIfcLmrdN/Hq
541VlPyo1nJZsr9gZKV1dvk1GzGmNIxaseYzawxw8b5aIuLmkj964lvbjMBHs2Y
542GvbKPJgT4IwjHU2M60Z9zaxJay2q82jOvW7imzuIw09M/N62xB3Y4vzg2PTc
5431Y3DlLvRQZcTOT9k2KkbI9yIO3oRp49kqMxpLsiQmvFI+aixU07ByEmo9dWN
544nOizNd8X4MY+iZVa2OXxfLF1eOUN7BJ5gzGP8lY35qGTp1Mvdn7DrOl+1Ckz
5452aR3xQ0c44KM5UjBmyoWxizKWzlmSXiNuziceIO0QO5EtLxGhbcCxmNZndZD
546FmRZxwtW76G3JlNhmEu/D72UeegIUTb49HdULgbHvCgzUhT2yiEg+9MFgcz3
547BvpoC3k6ZuTVzUGfVfJgOkgehjoLA27vCSBvB5AfCdpT8mAdSl6rdhA2F2Xp
548DUAm30v0nE4HCgKgU0+Ag+iS4Id3B6B2A6keygQmEpuuPUPpfLn8UL7cbG9J
549BmGsIA+gdgOTUvIw9ND2QKdAvp1C4qheEgHAl/YTSWc3wwUNUJzSuIvfLSk4
550qklBrah3BUj3BkhrKAHv4vLq8ZAN7ClL5ViqVfC3gwHSffT+cAbFXMRZ+Zhp
551diXQg5ij9CA5ZXoLgu55f77YsDlbjoEqld7BDKUFqeWBfAcCePsDS7o/wOvs
552TGMkJm+BwpEHcQ8E8M6nd1UnuAOlB+pUegOZFXMH58oxyNH4du2iwHzuy9gM
553FPYAKl7h6bVHBnPySBo4R36Rii/8bV8g4kJ6vz+LYynHMjkGGlWSBxA+FnFF
554FtEul1strD2kVxiUxgXwDcsCjSJ5UMiKQFwmvySwIKUHfmJZhmC8oLc/t20a
555PT/g4c4AXjbg5sSexz7baP30qWd++Y0vvHiKXknLYBLLAy2f53jgGHABMsoX
5563hkArV2HiBJ5ZqEtjJze89ivDt05OEyv5MCB6PJA98rIvkzefnJhAMZuelsY
5578NAjPBDtLXsfl7rjQKC9cwIDQB7SfQd2cBcGsOzKCnlj7KsH6dXo4ffOG996
5586VjSBb0kbiE8/OtDARvnBLairInJW0xJQzl2tMwij+Nk1kKH5E96oBcxpZj1
559EFMJM3ol42FDvicDYAZ8bqDHcz1T6DEvyjJYl+ccnF1Sk8g1WgmZnJ0qZYht
5605wbWgpQh1qzOzNsoYnvWlNFbGvhG1cb4ZCFRQ0p+Tz5loefiQHAlD/1nGb1r
56154BE+LxA+0gPbgKvCcRl/Z8beEINVlB3UNcGihULbNzI73Oeb6RV2FSuYsf2
562jiydUdwWaGd54FeVe/Bpyj0Yh3J/A7+f2ewhLeyMaE9It1zYJSjyYPZbA02f
563Q++HMsobCt6Dvt+QWZC/qNk+rp5vU650ThzU81ejsphxlnBF0HcO5IuLnAWP
564gXbmOkXHlfssJKwN9LFFjgUxk3wPZ59R/nh+1lYRtBLfc5wqo8pKsZ4bf2cm
565ZqahZbTJEbcdxHoZ13eTS0/HX3/9iw9S79foB95cBYRugwLOZs4LV6E4e7g8
56668AcGsuiodqHnRQPJ6cQHL3Vt0MoOD9QMbI9m6koxV0iBv9dWRlG9ZYpjWhZ
567juoJq1RtAvs5H6l53sXP1kwd6Q2njlR/Q+o3rggw3yQaoSyj9fKf/vbhIj9p
568+fxE7KcHDYsDdG+QS2nSAyHrwkBcSXgbO7LUhum6AOPrBYIyZeH+okWU1//6
56963tKOX769S88YrZT5MG+5gV21wrE0tAKNSEVCzoJiNU+qh401RBUFTCs3xRY
570jwx724mrxDEXNoS7Nh2jHpxqsZqUgse7MGt+JGTQMiOOvVfmYxY/ZRIEOpoF
571GTM71pNTbcM2KsvuCXRb5M6eze0ZMLMmWXRiaUNmczXR25sbszrTRYH9LQUC
572kDKtD3C4MdDSqkC+3Zk5Y1jJg50o+TtQFuZWYztUB5j8xUHOo/RgLKn0gopO
573okeHzUquzsdMXOluWAxZHSSMu/JvBwryoE4lvw1FY3GvkWMw+Lo+QHt1gLaS
574B8WuDo6d7cnzzIFxtSiS+JoAgI30dgmR3J15NnPTJB40qjSEuU6K4GnOFrMS
575iXpdgPSaQFTtsKDUi4NjwAam/RvlGLiIawOk1wR2tiP4rRvKjBfkb8dTHDqv
576Dy5n8msDw3L90gxLE+qg0JjopZDH324IWL46QPuSAO07Mq82StOhCShdyW/J
577l9tw+0YUl5u4OkD7UnpXeMFtKD3QLtKDkQHPXuThPVN5ZyCVdj9wFm7ANR5S
578aafpPye1x0aCrQ9wXRuYkXIAXU3mVaJapV6taW4nxcthfbnZmqwOs/CrAnwv
579C6xra0BS2YApKsAGBolNGQWzECb/rgB4NU/o+LrWDtSr9G6VUxAVNMmEDr0u
580QP1yeleYYcxyKaotoAdR4ZZ8ucG0LoD38kDcLZlXs7O1AeSLG54UFDhvy00Y
581Opw9rQusakvmf6CgB+r09Hg4siUQ8l0BqFcENqQcQi0oGmIq0c0BqduDyy8P
582ML4iwFh1Bnn2ZZnGeEjebmiNK663Z63Y2JLHm+uJpMID5SA3GjWx5eahdom2
583d/r0eWuWsuQUQL4ykFJNA/yFcgCaBQ7Qau4IRFwbgHxlYFi31MFTKE3J35zx
584tzCwPZCeyV9N9G4NNHZ5cAwJQL/ekXk0478kgHd9AO+moD03wjUFy+1smWjS
585pPkRjRYta7d2tAYK0XpHbnus4Atw30DvzruZx1BGQM/KiKaYNCD+cjJMGQ33
586T1eMpO90TbTMyc2rNl1pigm3wzhmXhv4BNUPOCIVA+xFxVgtp2g8f2viQ3iY
587UVWydlmSViV94LaYH6llTaCWq4PuoOKBaah4YK0o3s+qw99VllW82slcMzpt
588gZGdkkzsbJ10l6dOByM4zVZhJHsNvWsnAE/qShDFtBe1vTaBT8WYT1av9w5a
589YW+aeuXUp8P7eTAOZCE2Bj1ZkzKwsnW5UUMHhOjcUB3+/eq14Mknn/x+9Z+E
590SsXhaSqY00wpg2DuSnWmDu3CYHPX0fvNARTrAulQkvuqy1OMerD6/xt0mUoy
591damy9jT/mtOEfYEmlH8wp+sCl6CjEHDPKg70GRBn4S9Vh59TcajL/2FFeqNC
592VzsfTeTpn2q+mk8/9gdaYQ9/Q9D13eDNyipXZdGsk8j8RI3vNRXLSYfVZiC3
593dXe9DSMtFIHNXE/vav0wfFLuwPqVu41ZGAvtA8HlFwQ6vj7ofNoejKuUPJgs
594kOdcLOVh9Dm6QcIc3Ewkb8jaGihoBBNEE41RbTuVIZyU1rlWBqjeGFiyVipA
5953euDY/1wOeQWdyHD/JOVAcg3BhaolQrohBsCpSF5SEkO5ctNT3yTbTPR2xho
596bENwrB/4gWTh7kC+8wJ4bw6M6JpANRuwvYB8WkLE33gmIpcAzgtA3UTvESxa
597lQAl9gFTMLXynsyUjXw5Abw1MJpCAl8GA60hPQBBp8uAd1gegLo5MBolD45B
598aYBOlbwg0UlOZ2zQTaKKxF4ewHwLvSsN8AjXBMpEuin9TQVDphuJz9XxLYER
599aX8En35toN7eSdopZy3DsaUB3LfRe2Q61wbqRXowPnsgUMfZAa63Bdaldyyi
600giq01wvowPjsoSyBDfG4/rU1gFfpgU+7Ljc6HtMDVh7Kx6yJJQG8t9P7+oyX
601mdHGAPIeoJdu6vA3NzvT5FscwHt7IK7mKRBzXBHZtKvkrwrQOZLFtQ6oc41h
602dLo16LxKHioskZMG8lyuTJ2XLjuSATAhFgaAbwvsSwc3MDSIytjKgZiHlSuh
603Gx/J4IwBGzsC4JUuFF5cIlksg0tmmcZ6/O14IPb8APjt9O4UbW7Dlc+t0S4o
604Bm7jnAjkmx/AvD0Q9/LM64aCPCgayUOQ0CUVMOLjSLkrMCwt4YAKbwyOKT29
605awtDmkcRAv7WF8C7M7CqyzJU1k+0mg223nHkeRyiFQKoQ/cGGO8MMFai4Epu
606ykCaipWoG9abxT0WyMzk9xA9VSI4CyUASgQCVpAkmZyIYIndANfdgYhRifmm
607LMd4wYEwDPPvbe6WsgGBpRsgvTuwrkszTOVNflBv27OBGD2ZUUDF7AvM6ZKg
608AaUHmkV6ECSeDMRtB6jvCVB3902GCvLAkpLXvgfG/96giVaA9l56d1oeKOiB
609lpEe9Jn34uWsEaZ3IJBvTb7YRr5argR1CsM6ceGMtoGM5kW+j4/B2lv6Y0M4
610EBjhmtyGRa5bMswnEWZN8M54/0jlHG4kKecAdvXHGA8E5qx1OkidlfNgEwzl
611fK4bTxYzHZmgFhQ9zI330BuPrISumWRkMRdnFMo5YmChKMEct7J0lUODXTeI
612GpgkQTbjHX/00kDjLmJebwCD19TbEmDfTeB2jntmRtXB98sx4vwPXv70PQzo
613wQDWi7KuDMLbsvRm0sjobHbWzPMUP+DQ+pPf2v/7f/vK9sQTdLNoqs1twTHk
614aTabbUaTEJU76jZv/Oiru3/4g395p+iy6EqrMjpDBXdgiMqdc12TN/mbdprh
615B+XXpLJX/8+rd/zv//zP9hFskSaVLyhCbJFjYHLaY4s54Ry1mJpO3hv9n1/b
616/eM//+092XKKKUj+ZiuYChIAjQnGXR/+kliv/c2/2XEwgFvLhTBacBNTLJNH
617qillZSaVqh+Z0StJyOG/SdP+moExKn3wnMVEHE9fQgSPVnyxg/ngPqlLc5PI
618OQQXEyl5GqnWZiFxY43Po8bnpXtXRhcjslo0RPtW1u5bf/rP92byxXRNnhLM
619c1mjpQrCA2E/72QKsOaiIcSKAeOouJ0h+O7PRmQsoWUumG7ajZf18CzZvmAC
620sC73goSLFTmPLEXYBU4hpDKnPQE8NwWsNWUmLB0zsfqnhFGLh5CiCXOEk+hT
621mFstV8JA8IOBKrsBjHfKGT+7OxnUS6/8o0d0OjSMV+5AezL6w5PAKdSo9Ik2
6228ZDp8wxtVvL5GecBpGe2Y+4epud/iA4poKQIUkhtaqDQgpe7A/VuVMBnRKjq
6234t/X3/r6TpOKM6oVWS3miHj8x3MzmkSZt5Ftkv2zntn38W6pslsKIcquch5Z
624wDxpRdy2ZXIjyp9zXIh6Xz0o4De53NYy1oqVdc2AU/ZxLeSUdx3g6g+7VPYC
625DHST8p32uB2js026jhetclLHU0JZcsGAaIi7AMkTXyfVybG9s+Q6JZrc5M//
6260z/dz9/4bmCLgkaLAiGfZGWxHXLHbX3/xy/vblIMb7/5l1+5s9H6kz/6jYNf
627SrcyWSL2k3wfpzmW5MgSibNL08sbWTY25BbKJqgxfowkY0roskHL/ohsiyy+
628REI3N9ti74cCW5wvAFCQMl23AwCaBEC7DoAWpTJNaqT10z/78t42mU6TbLtN
629qDYpFWvRJ/YkcpauY7L8W4Gxy1nR7/7aw//jVz95il5EhcixYpskfDsQPtp0
630mWcSiCkMe0Bg6uWHAuMXQNokLrFNXDPnKAN3jhbK0GIkSARGh3FqMmKMHaNI
631eLYJ2ZVEJrvu5VldFld2ZC8m8VZFgPSLRdDl4ESVuKH2G0163x3Ei44RreJo
632WibBrWSEcJKS+BIheUG+aLSAMVgJweBY5OAbWQumiLhdY01vJEBKJLyM5Shy
633QcbDEpJ6lbJBkwIZnr2To1hav0ugqD4gqohJcULkQqnGH8hIngmU4uowbUoE
634/Qri87IBW3QRahuSF0dqkFXMFH524TrjC4pcO7LzcAmM3N/le2pp5qENZKJY
6357VCmHsIoRxUOhRaSduHAeitwYFkCQ8O7bjF5XXlGWP7oc5889b8+8/GnU10C
636QrfSg8GU0CPyIrZcqeEXaqfP1IErfZc0uDcIjW5JPk6sE2UOZCGVKCQNz0wN
63779/9w+efzgvtmIddTrdQ8eIVa7nTKNFiLTLr9MN0aFFOuH72jc8/zFT6jcq2
638enVCwUpwwCwZKcOdxJPahFsjJqu4Gq2Xv/LZJywj7qN3dmaNFqmbIgRz2Ifj
639GjIJve3YSd8TjmwaCtRk71LIoTw7XC3GeLSSY3nz8y+cavQEi9W2xinzyx/9
6402MdIaN0XYGSSsTS4l5TjT7dw3fy0WgwUfRdkXZIfYA+ry0w9KunOzuRBRd7S
641gOPE2dmmzUvtCJBENpN3zo4xdFUdYpFipx9PpPkkMC6aH610pPe+YPmfxjSo
642Pe3McFvYUJ5FEza0Bp/nI23SONeX9gX4terxA8fnFpRa6gK8YHSbRs02nlSW
643YAUux1VtFAZe0aJW5cF1bgtuH67VYSvp0PMAqw3PyzKVlp7GZvytCeTBdTP5
644xXlcSirwI5TIOUE9aWeWabSg50b3pbjTQj5F6IHxnJKHW8SePGf8z9ZjTEmm
645YRzV4ZcHBJgo18ehdo2h7tk6ZAdcjgK9xvWkgQJKvW8y5ydXaHkcwuJMVXGw
646Lqdylp43yPT8zu1pEm5/bOvI/K02M+ORU1RhVeVB5NSZ7BODk4v6WpafzTPX
647HLDJvUldw/s3chg/H/740z+sEquwpq98QgzamXm3jtyals9pZlbD7c4pDGCs
648ir24YJxjwj5nClCScl7ABJie2WkmTwMcU/ThFOfyeKxIXnYXPW5gcArvoWwL
649j36TzmmebqBMgzPWchCkYhw45sfDNjKSxvwsgSUVdwRGo8EHimgqEEztBIH8
650zp4i0JQbe9rA9CP1tkIjcXIWfl8pgD+ahxH58mgVNRrRTJ5X4PRgNzimMZ6/
651/uwnnnbFX2J8jzMZMI9orbUyuTjLZPGOcZMo0KUo8NZTH3rO52QE0P66gBC5
652KqQFsfzZqXVEGRand5EHOieLZf5hJ8qTjcgSweRYmeOPyrFomEUgU6TN8SQ2
653ByjYqPTgU4C8zZpJhT+e+sZP31hKnC0nzhdJ/Dj268/d9/r3vniAXo0mvfd9
65499svVYnvW6985vCb3/r8If7Gx5aO/u7n7l7+/a/9g8NL3/gXL9y78M3f/Pj9
655vdSblsiN7xHvlnZlExkOMeJSrB/xdwnL5fRp6UT6tIyOLSMRFnPL7b/42AeO
656/fT5Z46kV++PP/WRhytmf+UjD//8hWeP8Ld+el/2w8/9vQeWEYvCLLHdS9yc
657xTppGZpOodF0GLdVqpl2L70vIziPBJbVN0PVFgMXzwj0dGVkcT5lgP6SHIuq
658/lQztJIM3wvi+4K76hmBKadRso6MkPijiU83JcWa5UDfh92MqzXCYZfYKe/s
6590DF26cXOTz6jnvCaU550hmzqdnJjQI5BCTEa2HSDAhqzncsePPmVa2Kc3OpQ
660Avq/ThqTpfFd2HykIftAE77qicAVdAKFJRvyY72eYEy9KVBntNek2yfFVKwc
661y3CxM6ynJhcYtYY79OLzz9jguC2D4zf//Ct3/d33fuvu//qDr94l9zjbUjaB
662EWG/MO7LI2nEDYyvzDZnHUJX54IbUcZ1bJGencDePnK1rUC/0Q3ObhChNwcD
663H2UTxtfKJjmQowW+xRCIuwv3204ezJre+83uCkVzmcndbLHQ53ZsGSgAWpbN
6641PqQANTjPQa9oGYdgVNbl7sgS26uc1tWZDlZ1SX01imFp45XWlKWxEn2XNE8
665aDejwkx9K4LE32SKSorlaS4Uf5P8reM9QtJI41CgfbdXlXm72zMbowVJ8a2d
666UaeetJGzDjPaJLefEcNUV0uTUJdz2wFYJ0YyyV2mp5Yw+m40k2p0STLQ5KoM
667nP1WSUL3U5KalxEpwnnEJcN//JVfudfu8t0V6O2irAgzmi35WDGz19euTfAP
668I7dcIYv0dVFmc7wgBX1GSa3Mp4wzDRrplh43z6SiqXG3Bce0bZ3/DQM+CVKd
669Gdcr3NMszKaEv7a/WUOKjeajuY2JzKzcHgPWYXqm47hvNgvNUyhKgLhpfZPm
670fTK6UboU7SYUbXIxBes6UK0rWXSynnOFkBA9lU8UMGCk2R/Yn85mArOOpqtO
671z3ZdBUOsq528Wqo6KdNwC4/HSFxmc7vLGB1lCzr79GzV1Srk6aKnMyegaU0Y
672J0/fLgw22vxncwCp8qmrHYJHiNSWJ9zzkqxgp3eKQOFqHaDwKea7QxdTjqEE
673ghwHDxapnQbqnvk7njK1pwNtK8fRDP1ogQD0rM0B7mgLweNGJpUc9Fk5ELHe
674F7TcDbDlgZPOzh8dnLzlIOS3uqBOfARvt5uwt+coPRnotCdAyNMFxpUuOBul
675K528nTxy0oKShLsg0XqcaFC2FpXCUN2cuSoeAJ04SFacMvgnM9hWiWb93RmQ
676vCyza7FP18eAT1CSGv0gsj4RgNwfgMyVr3cFilR6UO1Req5jmU7YfNhH6wNd
677wISY3hUZgnK3Rp+VJSrqGKFK9lhuwnK+2rVy8do18PU35vbKFbdCvgM1/oZG
678TF3DBgYYrVSMaqJu0yAbOtwQ4K8LjsX6IHBbWVtX8kGZm6skDISuNYTUTpdE
679wq0wJaQbQSSDSYZ6IkB8USDqNkcSRgHXZ9itqyhJtz+UcXM8N2GhX2sKM10F
680C7xGOz70gSbApR0LIFXyYGBTkIdarJKHXoTkYUqGu1dj9vhAlsq6yFkBIrzK
681fD02ytbq1iEbLMqDdPweCGANcdX2/YGsEVMqD6VZ+dHGDtH+E0rQbXFsroO9
682xoMB8NFi9lsD4N1yZrMZXdsO96b6vZ7aqX6XupVyAKnBdMv3QUTdNgA6F5C0
683wQL7nwcRV8ZaB+Vgan6bAshl3NYFxbMHy+X2bFsPBJfrOBzsaLOjB5kIH+Oy
68423zAHUps9wconhNIFdXLdI8CSCfdnrcDBajrMybm0N8dgDrTfT2UFGTibtsE
685C9tKXiy/46vGw8kcDmesjbW8f0mR9V2TaZgtabeC+ypINwWmk2rCLOrhAP0V
686gfi8/GCj6VOpQWeZD6CkdXecPSkVcDI6TxEsKdqe6Fr8rVck3EaZD9hAGnN3
687AK6SBxO7IdCxc01mYlfl9qxjzHfc8sRzJQp2OMWuQ9F+POD03KZHwwXkkkGe
6886cM6IKU6mFG3kjJXmbj6ewPqhA3uqkBe5U9y+7flcRw++NFvGf8DgX61JDZ5
689E7J49ysIR1dmnZe7X4ko021yV7cmVW/vpuiZnPOBADoufkU7UinDkPopwxP1
690DM/xYRs6uks3JTkb2I+mwQRXyzHoTdEuim6nC+tNGuEhgVsAzM/xiRvuUcym
691Wt3vDeb4124fGA3alFtwPcjtbB6f0Z+xHE347gvYvjjAN9rG0W11YcagHENC
692ixzP5skZOniCuuCeTNWO6RBz8n6ghTlHG1VE24MqxzpYjnef64QLWSWR7Phk
693L+2blm51gznwYPWawHhvyqofL1iFrqusivVYcS8h42aEDAHJAize1NXtUmsd
694+/LgmJKUZ3+QXe4KVKJ1CbDzaGtc3XIBwpsShRu4C+ByqMLtzLhaFFby024M
695XOz4wKFHB37gI3Qr0s2oFb58R4DxZYH06wItRyXKaFsXJS8a6kCorv4YcHc/
696y7TFQF5FdG/LjY4VTEJfVUJSMG+nAlmCYmuAdO1G01vkBJjO2kBeJakcjg7m
697TVySTDBJhzvBukCVWuSHQcjarJuBQkSll9aTsDeM9nOP9vGONiuPtmBeG7Sn
6985BUdGJ24bWmtWbdVs0Gu4zWwLt6nX/mHqSKuamsdSreBlrt2PVApaxTja33C
699T/X1ygAITxVGJko1ePRywzGZ91ogAq6WbKMZJQrWtTZAf0uW0tB2G9qYeMCD
700jVJSt2Cy0T6+PAaIHoXAEPIoRalBb1Jq7nElEwnrzSb2hkBEfpiDe3iEWZRG
701OuhASkUvhy6+KUNqVqX0wHr42RXb88XlY/+gAym97ZkVC2c3BdhFz8p4RwDl
702tqwuay96VIeSFyfa9vUxQkqTPqjUXBNIHD0bZVsG3BKa4jmL/G2x5wBGCab9
7036wPgebjGSEfzyFYH0Ckhudwy+TR+3ph/YQrXwRwY0wX0Hj0K081PHC/YiB49
7044KbqGRQbA7j5mDzUaNLzP2EFyo4ApIsykeGCvj5BBwKtygvDSeUpesA1rNzh
7059Vt8InqYq/NqFk7cfATrIcgc3HCPtppV+wRb5EeEturWEfUHj3N1u6+YpSpz
706UF1R5mQL8I4vuNFP2fbcXprDBZOA4EpF0M3GS3PFQanbMkZm26uyoq0bK2sS
707385ou325xd5OoTSNzDcEeESP31qSBbNjMtev7aen2VpgN63WtKqzfWCcrA9F
708EZf4dmzEz6nNRDKu9WhcHKwZzLOR9zQ9jKeRNWXaHX00z3dnoJxoCxqQZ647
70973eyUsw6XIXLXM7NgQXqWiCcb2ZzLztBeq2dElbtqGjQr1G0Oe69r6LBLbmr
710srhmg/KAJZksyb0d/FGxw0oru6e2X8NJL/eIOjO6aO8elG6O+/FLcaYDkwSr
711P5ayuEHLprg5UGCfc8Lq5kSd/XlKpbk4HeeDr3XLze0YSjfHPfqletNJYy7o
712VJdnSM08dagcPRJ+8uYGWXP0on7nCkPWvVQ2iGQo29SVk+mmgYwM5odfhZUE
713HsAsrnF8oivwkc2gw6lJgi9ZGRxTwbRqMcPt/fszQuY7ii1YWWEaHKNlbrQs
714lz5pERTGitF8aH2C2UGkwsOEdwZmsSUwi+gJ0/uwPU8e7s8p+bvyqXLwDhpU
7158tDnlgd5rhZVYZiot6HALSp52e7eZn5Dmb7YU42PbQ1QcL57SgPan9k4XbAG
716Pk1Zc/c90lNq0rAPymxbA2SEpU4ydVghXyic7TZaYIRs+JteiQ1QkOZGsIvA
717osBtRE+OVWQIAct+dUUGJNDKkt4Fg9KpzkWkS02C4qGpfB2P7Fg7/XVJafTI
7183j1IsuTQOr9yKBvhd8EJVn8pvV8VqHF7oEa37wZO0Y/2lHG5jiHg1rha79LH
719T+pwlu5dvVW9vsO7KfE7V9atWV2nn4bCAOaqbAfmtXTgEzwNt1N6Xt7ujUVR
720m4SRWbTbBfLed+rUqW9Wp3imsGYHo+r2uJloOvfOAGdZidbxe8XQZ/Zrzv5t
721OBKt+1bWNLnrH5TbKHfT6eKx1Scda2ACuwLoFgU+zj2jw2CXBe3Ug/Q5spsy
722I99K/dRtoGMRxW1KaH2Pc8slgQtTyjDqW5YbGCj0pIkS5fv0CKW9pCf3/PHy
723WfGgJzVniHTcH/RhD+AYluZjVl4DhXSvq8D64+o0vf7LoNzVIGyEtE1JIRaI
724rRVZPWZ8ewL1LHAcgTkoR3AnUTmS6SDtNJxOzn1FoAglGRgrWkQ0L0D3wIC+
725r7bxYD41kdyF26fGPNq+QOL+gLw+9wMMUidKwf09Jf9QPmWcuZ1WDPB9gfRM
726/r6ggbNqlZCe7wC14Gh3Dg1DYHKcUunUmiDNw2kESk9WRLbTQDBl3suCVjhZ
727iyB9d+avGMphT1OS4kDPnuvMhaT1dHdiaaCNgUAbPfWcQwK4JBBdOZdml57R
728nIaGFPYnUvfnprkArenl5J0uH8zqK8pd2GeVSx1t31td/pPqNL0aTX5vv6Yc
729pLKAZiKpKsDf9ClrddMZomWabgsgc2kHAxV4aaJHiEAJdZnHfK5zGeR02xfH
730SdluhbvxcCiAvx3YjJtpWdxMQgeC/M9xOoNUnGym+pC+GC82Gvam3Xo2oVMq
731m5DBI5uzmccgg3V7Puy4BrlFGR+LeZqYTN4PWN0ddEDlcnLKYFzOZu5CtPpC
732KYD6NS6A+jn3dg+csd6ns9fBuymLYvezmqzQzWopppdgOVhYhLWPVkF0D+Yp
7332wBLVS6lwbbPhgmh/kB3kjG0PTBE8QhqjgkoQZgwAAQ7vi5vfPVmdVjvV88M
7347kOnXQ87ptNkGvitpLz+oR8TyVv1BbBqhE7Gyd+O5t+OF6RgQoCS0i0tIMi7
735UV6x6QUWl+7P5A20o1kPxYRw7LxKXpZxdOEWYEOGcAO5W0Am/G/lWDDhHuOM
736UpCFKTaNFZI3Nx19uGgeRiLaPHQaaN6WwyRBtN4OZdvTmUkzgt4Ml0GtLb8n
737y24l+wIPFuK1ACO31MxMWnKx9MgRsIVmVpBp4Q8yZxYZu5nUaNHsU3LBiHPa
738JFAC4NuZgimtmxVZJIzpUR3J2kYG3Rzgb2fZ7JjzQ8MFY+9DBY1rc38YKKOT
739jx0tGJJVb31+DfKQmviAupw0xzNZENxG16bBgrRpWQLYu0GTwnSrIVWkRrUZ
7403mpZdhNJOaTsy9zoS7Nb6jhiiEayPot9NvCYcvXRDBudouaoWdm3mHP5TsRl
741o2CTzUTY7ERsNpqyOYyxSX9fErYgAXBbkplFy2im8eLbzmrLs9qQhgI+P4OW
7426PmELqJ8qjOc8w5yl/7/kvOXs/EeLVwG1JJAzrntPOceiJtkbPA22Y2+o9N0
743kPEsayfJOTKYd4eXrLNWyA9kgYxr5xeHCyF1LBAMVbqvOaHpLwExzaJwN1nn
744FyN6o3tyMD9dLEV3oie8dMEPVH/JEZ7n9TqrPe8OoUyyWw7L1IlkksmgjYVJ
745pgl9JZlSESeVA+i3SaYGK5X37ee8j6t00Y5w504rTd2I53itNC0vjSyoeHtE
746kWJlF1xM9Zc0pZrR9ZqwGH2avfJO/b+XRe/VpdQwZagrQAZYnq4y1A2anuPT
747ncQ/cT9gZLmzZ+bbJfP8EINGz/S8izMvZnO2k+NLjn4FWNVMdsn77HTcN7op
748Ap7WFCnJ0DwTAbQWmyJp6n8qwAS9SVWkL7GWIs1RLbWlfFlcCzHQHEOu2iVX
749Gp/CfEmH3XSp3V723Fw8d24abZ8vjZhJMDc9JTcpu2PoPAcbZssBp1SCe+p4
750ye9wg++e/Lkx7/8CcBuv7A==\
751\>"],ExpressionUUID->"c7604bc4-daeb-4307-8062-feb03db86f17"]
752}, Open ]],
753
754Cell[CellGroupData[{
755
756Cell[BoxData[{
757 RowBox[{
758 RowBox[{"Rp", "=", "1.02143398131630"}], ";"}], "\[IndentingNewLine]",
759 RowBox[{
760 RowBox[{"B0", "=",
761 RowBox[{"1.55997", "*",
762 SuperscriptBox["10", "19"]}]}], ";"}], "\[IndentingNewLine]",
763 RowBox[{
764 RowBox[{"x", "=", "0.5"}], ";"}], "\[IndentingNewLine]",
765 RowBox[{
766 RowBox[{"y", "=", "0"}], ";"}], "\[IndentingNewLine]",
767 RowBox[{
768 RowBox[{"z", "=", "5.015625"}], ";"}], "\[IndentingNewLine]",
769 RowBox[{"rhat", "[",
770 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "\[IndentingNewLine]",
771 RowBox[{"thetahat", "[",
772 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "\[IndentingNewLine]",
773 RowBox[{"r", "[",
774 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "\[IndentingNewLine]",
775 RowBox[{"\[Theta]", "[",
776 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "\[IndentingNewLine]",
777 RowBox[{"\[Phi]", "[",
778 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "\[IndentingNewLine]",
779 RowBox[{"Cos", "[",
780 RowBox[{"\[Theta]", "[",
781 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}], "\[IndentingNewLine]",
782 RowBox[{"Sin", "[",
783 RowBox[{"\[Theta]", "[",
784 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}], "\[IndentingNewLine]",
785 SuperscriptBox[
786 RowBox[{"(",
787 FractionBox["Rp",
788 RowBox[{"r", "[",
789 RowBox[{"x", ",", "y", ",", "z"}], "]"}]], ")"}],
790 "3"], "\[IndentingNewLine]",
791 RowBox[{"B", "[",
792 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "Input",
793 CellChangeTimes->{{3.777996124693808*^9, 3.777996143862501*^9}, {
794 3.777996237118054*^9, 3.7779962560802393`*^9}, {3.777996288587043*^9,
795 3.777996353549342*^9}, {3.777996649665572*^9, 3.777996659843318*^9}, {
796 3.777997050081338*^9, 3.777997087336652*^9}, {3.7779971837837477`*^9,
797 3.7779971997210417`*^9}, {3.777997426389578*^9, 3.777997442428981*^9}},
798 CellLabel->
799 "In[436]:=",ExpressionUUID->"73ecd243-6f24-4e2b-9ca1-5faa63414ab9"],
800
801Cell[BoxData[
802 RowBox[{"{",
803 RowBox[{"0.09919679351547352`", ",", "0.`", ",", "0.9950678349520944`"}],
804 "}"}]], "Output",
805 CellChangeTimes->{
806 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
807 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
808 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.777997468577096*^9},
809 CellLabel->
810 "Out[441]=",ExpressionUUID->"0e11c746-4c97-4c1c-a158-6325b85d08af"],
811
812Cell[BoxData[
813 RowBox[{"{",
814 RowBox[{
815 RowBox[{"-", "0.9950678349520944`"}], ",", "0.`", ",",
816 "0.09919679351547352`"}], "}"}]], "Output",
817 CellChangeTimes->{
818 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
819 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
820 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.7779974685797358`*^9},
821 CellLabel->
822 "Out[442]=",ExpressionUUID->"19049c5f-53da-45a3-93ba-fc1ea34cc8b3"],
823
824Cell[BoxData["5.040485506439335`"], "Output",
825 CellChangeTimes->{
826 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
827 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
828 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.77799746858202*^9},
829 CellLabel->
830 "Out[443]=",ExpressionUUID->"de229508-91f6-4cbe-9fbe-1e6b6eaeac35"],
831
832Cell[BoxData["1.4714361258670554`"], "Output",
833 CellChangeTimes->{
834 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
835 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
836 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.777997468584486*^9},
837 CellLabel->
838 "Out[444]=",ExpressionUUID->"7650d2e6-5111-479d-b8b3-ec9b8f1bf19e"],
839
840Cell[BoxData["0.`"], "Output",
841 CellChangeTimes->{
842 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
843 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
844 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.777997468586631*^9},
845 CellLabel->
846 "Out[445]=",ExpressionUUID->"24283890-e80b-47e1-ac53-31a6c85c3d31"],
847
848Cell[BoxData["0.09919679351547352`"], "Output",
849 CellChangeTimes->{
850 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
851 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
852 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.777997468590824*^9},
853 CellLabel->
854 "Out[446]=",ExpressionUUID->"1a8b562f-a95a-4bca-81a2-f995f97691e1"],
855
856Cell[BoxData["0.9950678349520944`"], "Output",
857 CellChangeTimes->{
858 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
859 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
860 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.77799746859296*^9},
861 CellLabel->
862 "Out[447]=",ExpressionUUID->"ebb8d15a-8f5f-4720-9864-6d84389e5566"],
863
864Cell[BoxData["0.008321733336204513`"], "Output",
865 CellChangeTimes->{
866 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
867 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
868 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.777997468595084*^9},
869 CellLabel->
870 "Out[448]=",ExpressionUUID->"f9077a15-2f2e-45f5-b575-6fc78d19f1f7"],
871
872Cell[BoxData[
873 RowBox[{"{",
874 RowBox[{"1.5662692178831495`*^19", ",", "0.`", ",",
875 RowBox[{"-", "1.9220807213088`*^16"}]}], "}"}]], "Output",
876 CellChangeTimes->{
877 3.777996149067812*^9, 3.777996256719454*^9, {3.7779963240887957`*^9,
878 3.777996354966837*^9}, 3.7779966605839033`*^9, {3.77799706297257*^9,
879 3.777997087684435*^9}, 3.7779972003802757`*^9, 3.777997468597271*^9},
880 CellLabel->
881 "Out[449]=",ExpressionUUID->"7c585594-d6ee-43e4-905b-63bbfb1a94b4"]
882}, Open ]],
883
884Cell[CellGroupData[{
885
886Cell[BoxData[{
887 RowBox[{"Clear", "[",
888 RowBox[{"Fr", ",", "F\[Theta]", ",", "F\[Phi]"}],
889 "]"}], "\[IndentingNewLine]",
890 RowBox[{"DSolve", "[",
891 RowBox[{
892 RowBox[{"{",
893 RowBox[{
894 RowBox[{
895 RowBox[{"Div", "[",
896 RowBox[{
897 RowBox[{"{",
898 RowBox[{
899 RowBox[{"Fr", "[",
900 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
901 RowBox[{"F\[Theta]", "[",
902 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
903 RowBox[{"F\[Phi]", "[",
904 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}], ",",
905 RowBox[{"{",
906 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
907 "\"\<Spherical\>\""}], "]"}], "\[Equal]",
908 RowBox[{
909 RowBox[{
910 RowBox[{"-", "B0"}], " ", "r", " ",
911 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
912 RowBox[{
913 FractionBox["1", "2"], "B0", " ",
914 FractionBox[
915 SuperscriptBox["R", "3"],
916 SuperscriptBox["r", "2"]],
917 RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}]}], ",",
918 RowBox[{
919 RowBox[{
920 RowBox[{"Curl", "[",
921 RowBox[{
922 RowBox[{"Curl", "[",
923 RowBox[{
924 RowBox[{"{",
925 RowBox[{
926 RowBox[{"Fr", "[",
927 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
928 RowBox[{"F\[Theta]", "[",
929 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
930 RowBox[{"F\[Phi]", "[",
931 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}],
932 ",",
933 RowBox[{"{",
934 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
935 "\"\<Spherical\>\""}], "]"}], ",",
936 RowBox[{"{",
937 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
938 "\"\<Spherical\>\""}], "]"}], "[",
939 RowBox[{"[", "1", "]"}], "]"}], "\[Equal]",
940 RowBox[{
941 RowBox[{"Grad", "[",
942 RowBox[{
943 RowBox[{
944 RowBox[{
945 RowBox[{"-", "B0"}], " ", "r", " ",
946 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
947 RowBox[{
948 FractionBox["1", "2"], "B0", " ",
949 FractionBox[
950 SuperscriptBox["R", "3"],
951 SuperscriptBox["r", "2"]],
952 RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], ",",
953 RowBox[{"{",
954 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
955 "\"\<Spherical\>\""}], "]"}], "[",
956 RowBox[{"[", "1", "]"}], "]"}]}], ",",
957 RowBox[{
958 RowBox[{
959 RowBox[{"Curl", "[",
960 RowBox[{
961 RowBox[{"Curl", "[",
962 RowBox[{
963 RowBox[{"{",
964 RowBox[{
965 RowBox[{"Fr", "[",
966 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
967 RowBox[{"F\[Theta]", "[",
968 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
969 RowBox[{"F\[Phi]", "[",
970 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}],
971 ",",
972 RowBox[{"{",
973 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
974 "\"\<Spherical\>\""}], "]"}], ",",
975 RowBox[{"{",
976 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
977 "\"\<Spherical\>\""}], "]"}], "[",
978 RowBox[{"[", "2", "]"}], "]"}], "\[Equal]",
979 RowBox[{
980 RowBox[{"Grad", "[",
981 RowBox[{
982 RowBox[{
983 RowBox[{
984 RowBox[{"-", "B0"}], " ", "r", " ",
985 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
986 RowBox[{
987 FractionBox["1", "2"], "B0", " ",
988 FractionBox[
989 SuperscriptBox["R", "3"],
990 SuperscriptBox["r", "2"]],
991 RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], ",",
992 RowBox[{"{",
993 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
994 "\"\<Spherical\>\""}], "]"}], "[",
995 RowBox[{"[", "2", "]"}], "]"}]}]}], "}"}], ",",
996 RowBox[{"{",
997 RowBox[{
998 RowBox[{"Fr", "[",
999 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1000 RowBox[{"F\[Theta]", "[",
1001 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1002 RowBox[{"F\[Phi]", "[",
1003 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}], ",",
1004 RowBox[{"{",
1005 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], "]"}]}], "Input",
1006 CellChangeTimes->{{3.7784262146120777`*^9, 3.7784264250906467`*^9}, {
1007 3.778426457209392*^9, 3.7784264920899677`*^9}, {3.7784297194059887`*^9,
1008 3.778429894822977*^9}, {3.7784300024266577`*^9, 3.778430015154306*^9}, {
1009 3.778430059995154*^9, 3.778430131677086*^9}, {3.778430163106715*^9,
1010 3.778430169691527*^9}},
1011 CellLabel->
1012 "In[225]:=",ExpressionUUID->"2debc42d-3879-4353-ada4-b3c025721e1f"],
1013
1014Cell[BoxData[
1015 RowBox[{"DSolve", "[",
1016 RowBox[{
1017 RowBox[{"{",
1018 RowBox[{
1019 RowBox[{
1020 RowBox[{
1021 FractionBox[
1022 RowBox[{
1023 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1024 RowBox[{"(",
1025 RowBox[{
1026 RowBox[{
1027 RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
1028 RowBox[{"F\[Theta]", "[",
1029 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1030 RowBox[{
1031 RowBox[{"Fr", "[",
1032 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], " ",
1033 RowBox[{"Sin", "[", "\[Theta]", "]"}]}], "+",
1034 RowBox[{
1035 SuperscriptBox["F\[Phi]",
1036 TagBox[
1037 RowBox[{"(",
1038 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1039 Derivative],
1040 MultilineFunction->None], "[",
1041 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], ")"}]}],
1042 "r"], "+",
1043 FractionBox[
1044 RowBox[{
1045 RowBox[{"Fr", "[",
1046 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "+",
1047 RowBox[{
1048 SuperscriptBox["F\[Theta]",
1049 TagBox[
1050 RowBox[{"(",
1051 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1052 Derivative],
1053 MultilineFunction->None], "[",
1054 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "+",
1055 RowBox[{
1056 SuperscriptBox["Fr",
1057 TagBox[
1058 RowBox[{"(",
1059 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1060 Derivative],
1061 MultilineFunction->None], "[",
1062 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "\[Equal]",
1063 RowBox[{
1064 RowBox[{
1065 RowBox[{"-", "B0"}], " ", "r", " ",
1066 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
1067 FractionBox[
1068 RowBox[{"B0", " ",
1069 SuperscriptBox["R", "3"], " ",
1070 RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
1071 RowBox[{"2", " ",
1072 SuperscriptBox["r", "2"]}]]}]}], ",",
1073 RowBox[{
1074 RowBox[{
1075 RowBox[{"-",
1076 FractionBox[
1077 RowBox[{
1078 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1079 RowBox[{"(",
1080 RowBox[{
1081 FractionBox[
1082 RowBox[{
1083 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1084 RowBox[{"(",
1085 RowBox[{
1086 RowBox[{
1087 RowBox[{"-",
1088 RowBox[{"Sin", "[", "\[Theta]", "]"}]}], " ",
1089 RowBox[{
1090 SuperscriptBox["F\[Phi]",
1091 TagBox[
1092 RowBox[{"(",
1093 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1094 Derivative],
1095 MultilineFunction->None], "[",
1096 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1097 RowBox[{
1098 SuperscriptBox["Fr",
1099 TagBox[
1100 RowBox[{"(",
1101 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
1102 Derivative],
1103 MultilineFunction->None], "[",
1104 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1105 ")"}]}], "r"], "-",
1106 RowBox[{
1107 RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
1108 RowBox[{"(",
1109 RowBox[{
1110 RowBox[{"-",
1111 FractionBox[
1112 RowBox[{
1113 RowBox[{"-",
1114 RowBox[{"F\[Theta]", "[",
1115 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1116 "+",
1117 RowBox[{
1118 SuperscriptBox["Fr",
1119 TagBox[
1120 RowBox[{"(",
1121 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1122 Derivative],
1123 MultilineFunction->None], "[",
1124 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1125 "r"]}], "+",
1126 RowBox[{
1127 SuperscriptBox["F\[Theta]",
1128 TagBox[
1129 RowBox[{"(",
1130 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1131 Derivative],
1132 MultilineFunction->None], "[",
1133 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1134 ")"}]}], "-",
1135 RowBox[{
1136 SuperscriptBox["F\[Phi]",
1137 TagBox[
1138 RowBox[{"(",
1139 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
1140 Derivative],
1141 MultilineFunction->None], "[",
1142 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], ")"}]}],
1143 "r"]}], "+",
1144 FractionBox[
1145 RowBox[{
1146 RowBox[{"-",
1147 FractionBox[
1148 RowBox[{
1149 RowBox[{"-",
1150 RowBox[{
1151 SuperscriptBox["F\[Theta]",
1152 TagBox[
1153 RowBox[{"(",
1154 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1155 Derivative],
1156 MultilineFunction->None], "[",
1157 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1158 RowBox[{
1159 SuperscriptBox["Fr",
1160 TagBox[
1161 RowBox[{"(",
1162 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
1163 Derivative],
1164 MultilineFunction->None], "[",
1165 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"]}],
1166 "+",
1167 RowBox[{
1168 SuperscriptBox["F\[Theta]",
1169 TagBox[
1170 RowBox[{"(",
1171 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
1172 Derivative],
1173 MultilineFunction->None], "[",
1174 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"]}],
1175 "\[Equal]",
1176 RowBox[{
1177 RowBox[{
1178 RowBox[{"-", "B0"}], " ",
1179 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+",
1180 FractionBox[
1181 RowBox[{"B0", " ",
1182 SuperscriptBox["R", "3"], " ",
1183 RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
1184 SuperscriptBox["r", "3"]]}]}], ",",
1185 RowBox[{
1186 RowBox[{
1187 RowBox[{"-",
1188 FractionBox[
1189 RowBox[{
1190 RowBox[{"-",
1191 RowBox[{"F\[Theta]", "[",
1192 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1193 RowBox[{
1194 SuperscriptBox["Fr",
1195 TagBox[
1196 RowBox[{"(",
1197 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1198 Derivative],
1199 MultilineFunction->None], "[",
1200 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1201 SuperscriptBox["r", "2"]]}], "+",
1202 FractionBox[
1203 RowBox[{
1204 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1205 RowBox[{"(",
1206 RowBox[{
1207 RowBox[{"-",
1208 FractionBox[
1209 RowBox[{
1210 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1211 RowBox[{"(",
1212 RowBox[{
1213 RowBox[{
1214 RowBox[{"-",
1215 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], " ",
1216 RowBox[{
1217 SuperscriptBox["F\[Phi]",
1218 TagBox[
1219 RowBox[{"(",
1220 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1221 Derivative],
1222 MultilineFunction->None], "[",
1223 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1224 RowBox[{
1225 SuperscriptBox["F\[Theta]",
1226 TagBox[
1227 RowBox[{"(",
1228 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
1229 Derivative],
1230 MultilineFunction->None], "[",
1231 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1232 ")"}]}], "r"]}], "+",
1233 FractionBox[
1234 RowBox[{
1235 SuperscriptBox["F\[Phi]",
1236 TagBox[
1237 RowBox[{"(",
1238 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
1239 Derivative],
1240 MultilineFunction->None], "[",
1241 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "r"], "-",
1242
1243 RowBox[{
1244 RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
1245 RowBox[{"(",
1246 RowBox[{
1247 RowBox[{"-",
1248 FractionBox[
1249 RowBox[{
1250 RowBox[{"-",
1251 RowBox[{"F\[Theta]", "[",
1252 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1253 "+",
1254 RowBox[{
1255 SuperscriptBox["Fr",
1256 TagBox[
1257 RowBox[{"(",
1258 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1259 Derivative],
1260 MultilineFunction->None], "[",
1261 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1262 "r"]}], "+",
1263 RowBox[{
1264 SuperscriptBox["F\[Theta]",
1265 TagBox[
1266 RowBox[{"(",
1267 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1268 Derivative],
1269 MultilineFunction->None], "[",
1270 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1271 ")"}]}]}], ")"}]}], "r"], "+",
1272 FractionBox[
1273 RowBox[{
1274 RowBox[{"-",
1275 RowBox[{
1276 SuperscriptBox["F\[Theta]",
1277 TagBox[
1278 RowBox[{"(",
1279 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1280 Derivative],
1281 MultilineFunction->None], "[",
1282 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1283 RowBox[{
1284 SuperscriptBox["Fr",
1285 TagBox[
1286 RowBox[{"(",
1287 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
1288 Derivative],
1289 MultilineFunction->None], "[",
1290 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "-",
1291 RowBox[{
1292 SuperscriptBox["F\[Theta]",
1293 TagBox[
1294 RowBox[{"(",
1295 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
1296 Derivative],
1297 MultilineFunction->None], "[",
1298 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "\[Equal]",
1299 FractionBox[
1300 RowBox[{
1301 RowBox[{"B0", " ", "r", " ",
1302 RowBox[{"Sin", "[", "\[Theta]", "]"}]}], "+",
1303 FractionBox[
1304 RowBox[{"B0", " ",
1305 SuperscriptBox["R", "3"], " ",
1306 RowBox[{"Sin", "[", "\[Theta]", "]"}]}],
1307 RowBox[{"2", " ",
1308 SuperscriptBox["r", "2"]}]]}], "r"]}]}], "}"}], ",",
1309 RowBox[{"{",
1310 RowBox[{
1311 RowBox[{"Fr", "[",
1312 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1313 RowBox[{"F\[Theta]", "[",
1314 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1315 RowBox[{"F\[Phi]", "[",
1316 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}], ",",
1317 RowBox[{"{",
1318 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], "]"}]], "Output",
1319 CellChangeTimes->{
1320 3.778430016119698*^9, {3.778430066171522*^9, 3.778430109142083*^9}, {
1321 3.778430164035887*^9, 3.778430170714959*^9}},
1322 CellLabel->
1323 "Out[226]=",ExpressionUUID->"eef6708e-550b-4526-86af-56acaceaf30c"]
1324}, Open ]],
1325
1326Cell[CellGroupData[{
1327
1328Cell[BoxData[
1329 RowBox[{"FullSimplify", "[",
1330 RowBox[{
1331 RowBox[{
1332 RowBox[{
1333 FractionBox["1",
1334 SuperscriptBox["r", "2"]],
1335 RowBox[{"D", "[",
1336 RowBox[{
1337 RowBox[{
1338 SuperscriptBox["r", "2"],
1339 RowBox[{"Fr", "[",
1340 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], ",", "r"}],
1341 "]"}]}], "+",
1342 RowBox[{
1343 FractionBox["1",
1344 RowBox[{"r", " ",
1345 RowBox[{"Sin", "[", "\[Theta]", "]"}]}]],
1346 RowBox[{"D", "[",
1347 RowBox[{
1348 RowBox[{
1349 RowBox[{"F\[Theta]", "[",
1350 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], " ",
1351 RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", "\[Theta]"}], "]"}]}],
1352 "+",
1353 RowBox[{
1354 FractionBox["1",
1355 RowBox[{"r", " ",
1356 RowBox[{"Sin", "[", "\[Theta]", "]"}]}]],
1357 RowBox[{"D", "[",
1358 RowBox[{
1359 RowBox[{"F\[Phi]", "[",
1360 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",", "\[Phi]"}],
1361 "]"}]}]}], "\[Equal]",
1362 RowBox[{
1363 RowBox[{
1364 RowBox[{"-", "B0"}], " ", "r", " ",
1365 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
1366 RowBox[{
1367 FractionBox["1", "2"], "B0", " ",
1368 FractionBox[
1369 SuperscriptBox["R", "3"],
1370 SuperscriptBox["r", "2"]],
1371 RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}]}], "]"}]], "Input",
1372 CellChangeTimes->{{3.778426593103207*^9, 3.7784265962649317`*^9}},
1373 CellLabel->"In[3]:=",ExpressionUUID->"f8e2e83f-9f33-4f4d-a6fe-5d2d882b951a"],
1374
1375Cell[BoxData[
1376 RowBox[{
1377 RowBox[{
1378 FractionBox[
1379 RowBox[{"B0", " ",
1380 RowBox[{"(",
1381 RowBox[{
1382 RowBox[{"2", " ",
1383 SuperscriptBox["r", "3"]}], "+",
1384 SuperscriptBox["R", "3"]}], ")"}], " ",
1385 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "r"], "+",
1386 RowBox[{"4", " ",
1387 RowBox[{"Fr", "[",
1388 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1389 RowBox[{"2", " ",
1390 RowBox[{"(",
1391 RowBox[{
1392 RowBox[{
1393 RowBox[{"Cot", "[", "\[Theta]", "]"}], " ",
1394 RowBox[{"F\[Theta]", "[",
1395 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1396 RowBox[{
1397 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1398 RowBox[{
1399 SuperscriptBox["F\[Phi]",
1400 TagBox[
1401 RowBox[{"(",
1402 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1403 Derivative],
1404 MultilineFunction->None], "[",
1405 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1406 RowBox[{
1407 SuperscriptBox["F\[Theta]",
1408 TagBox[
1409 RowBox[{"(",
1410 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1411 Derivative],
1412 MultilineFunction->None], "[",
1413 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "+",
1414 RowBox[{"r", " ",
1415 RowBox[{
1416 SuperscriptBox["Fr",
1417 TagBox[
1418 RowBox[{"(",
1419 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1420 Derivative],
1421 MultilineFunction->None], "[",
1422 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}]}], ")"}]}]}],
1423 "\[Equal]", "0"}]], "Output",
1424 CellChangeTimes->{3.778426598996904*^9},
1425 CellLabel->"Out[3]=",ExpressionUUID->"0e7c6d67-e99a-409b-a9e7-40a0b5056971"]
1426}, Open ]],
1427
1428Cell[CellGroupData[{
1429
1430Cell[BoxData[{
1431 RowBox[{
1432 RowBox[{"Clear", "[",
1433 RowBox[{"f", ",", "g", ",", "h"}], "]"}], "\[IndentingNewLine]",
1434 RowBox[{"(*",
1435 RowBox[{
1436 RowBox[{"f", "[",
1437 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1438 SuperscriptBox["r", "2"]}], "*)"}]}], "\[IndentingNewLine]",
1439 RowBox[{
1440 RowBox[{"Fr", "[",
1441 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1442 RowBox[{"f", "[",
1443 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}],
1444 "]"}]}], "\[IndentingNewLine]",
1445 RowBox[{
1446 RowBox[{"F\[Theta]", "[",
1447 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1448 RowBox[{"g", "[",
1449 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}],
1450 "]"}]}], "\[IndentingNewLine]",
1451 RowBox[{
1452 RowBox[{"F\[Phi]", "[",
1453 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1454 RowBox[{"h", "[",
1455 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}],
1456 "]"}]}], "\[IndentingNewLine]",
1457 RowBox[{
1458 RowBox[{"\[CapitalPsi]", "[",
1459 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1460 RowBox[{"FullSimplify", "[",
1461 RowBox[{"Div", "[",
1462 RowBox[{
1463 RowBox[{"{",
1464 RowBox[{
1465 RowBox[{"Fr", "[",
1466 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1467 RowBox[{"F\[Theta]", "[",
1468 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1469 RowBox[{"F\[Phi]", "[",
1470 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}], ",",
1471 RowBox[{"{",
1472 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
1473 "\"\<Spherical\>\""}], "]"}], "]"}]}], "\[IndentingNewLine]",
1474 RowBox[{
1475 RowBox[{"B", "[",
1476 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1477 RowBox[{"FullSimplify", "[",
1478 RowBox[{"Grad", "[",
1479 RowBox[{
1480 RowBox[{"\[CapitalPsi]", "[",
1481 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1482 RowBox[{"{",
1483 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
1484 "\"\<Spherical\>\""}], "]"}], "]"}]}], "\[IndentingNewLine]",
1485 RowBox[{
1486 RowBox[{"A", "[",
1487 RowBox[{"r_", ",", "\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
1488 RowBox[{"FullSimplify", "[",
1489 RowBox[{"Curl", "[",
1490 RowBox[{
1491 RowBox[{"{",
1492 RowBox[{
1493 RowBox[{"Fr", "[",
1494 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1495 RowBox[{"F\[Theta]", "[",
1496 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1497 RowBox[{"F\[Phi]", "[",
1498 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}], ",",
1499 RowBox[{"{",
1500 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
1501 "\"\<Spherical\>\""}], "]"}], "]"}]}], "\[IndentingNewLine]",
1502 RowBox[{
1503 RowBox[{
1504 RowBox[{"\[CapitalPsi]", "[",
1505 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "===",
1506 RowBox[{"FullSimplify", "[",
1507 RowBox[{
1508 RowBox[{
1509 RowBox[{"-", "B0"}], " ", "r", " ",
1510 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
1511 RowBox[{
1512 FractionBox["1", "2"], "B0", " ",
1513 FractionBox[
1514 SuperscriptBox["R", "3"],
1515 SuperscriptBox["r", "2"]],
1516 RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], "]"}]}],
1517 RowBox[{"(*",
1518 RowBox[{
1519 "Do", " ", "we", " ", "get", " ", "the", " ", "correct", " ", "scalar",
1520 " ",
1521 RowBox[{"potential", "?"}]}], "*)"}]}], "\[IndentingNewLine]",
1522 RowBox[{
1523 RowBox[{
1524 RowBox[{"FullSimplify", "[",
1525 RowBox[{"Curl", "[",
1526 RowBox[{
1527 RowBox[{"A", "[",
1528 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1529 RowBox[{"{",
1530 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
1531 "\"\<Spherical\>\""}], "]"}], "]"}], "===",
1532 RowBox[{"FullSimplify", "[",
1533 RowBox[{"B", "[",
1534 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "]"}]}],
1535 RowBox[{"(*",
1536 RowBox[{
1537 "Do", " ", "we", " ", "get", " ", "the", " ", "correct", " ", "vector",
1538 " ",
1539 RowBox[{"potential", "?"}]}], "*)"}]}], "\[IndentingNewLine]",
1540 RowBox[{
1541 RowBox[{"\[CapitalPsi]", "[",
1542 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "==",
1543 RowBox[{"FullSimplify", "[",
1544 RowBox[{
1545 RowBox[{
1546 RowBox[{"-", "B0"}], " ", "r", " ",
1547 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "-",
1548 RowBox[{
1549 FractionBox["1", "2"], "B0", " ",
1550 FractionBox[
1551 SuperscriptBox["R", "3"],
1552 SuperscriptBox["r", "2"]],
1553 RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}],
1554 "]"}]}], "\[IndentingNewLine]",
1555 RowBox[{"Curl", "[",
1556 RowBox[{
1557 RowBox[{"A", "[",
1558 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], ",",
1559 RowBox[{"{",
1560 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
1561 "\"\<Spherical\>\""}], "]"}]}], "Input",
1562 CellChangeTimes->{{3.7784268208315687`*^9, 3.778426911757369*^9}, {
1563 3.778426942339408*^9, 3.7784270458059177`*^9}, {3.778427089103602*^9,
1564 3.778427205126264*^9}, {3.77842723710351*^9, 3.778427239720808*^9}, {
1565 3.778428041483034*^9, 3.778428114527596*^9}, {3.7784282132550373`*^9,
1566 3.778428255172884*^9}, {3.7784282945775957`*^9, 3.778428396418418*^9}, {
1567 3.778428473874443*^9, 3.778428565718918*^9}, {3.778428613833559*^9,
1568 3.778428733547985*^9}, {3.778428850444326*^9, 3.7784288962805977`*^9}, {
1569 3.77842897618954*^9, 3.778429034604097*^9}, {3.778429509004662*^9,
1570 3.7784295463338203`*^9}, {3.7784296677527723`*^9, 3.778429673289156*^9}, {
1571 3.7784302354995403`*^9, 3.7784303451042852`*^9}},
1572 CellLabel->
1573 "In[309]:=",ExpressionUUID->"1f7440d1-ceb6-4475-b3c1-a5dcd41859d7"],
1574
1575Cell[BoxData["False"], "Output",
1576 CellChangeTimes->{{3.778426952859618*^9, 3.778427006353282*^9},
1577 3.7784270466168947`*^9, {3.778427136891416*^9, 3.778427170642054*^9},
1578 3.778427242232361*^9, {3.7784280890666943`*^9, 3.778428102924094*^9}, {
1579 3.778428361667014*^9, 3.778428397072022*^9}, {3.7784286637049513`*^9,
1580 3.778428679722171*^9}, 3.778428736319353*^9, {3.778428886000354*^9,
1581 3.778428896887869*^9}, 3.7784289915193367`*^9, 3.778429036027306*^9,
1582 3.778429547751265*^9, {3.7784296551896133`*^9, 3.7784296749873257`*^9}, {
1583 3.7784302497489223`*^9, 3.77843027519016*^9}, {3.778430314460853*^9,
1584 3.778430346029541*^9}},
1585 CellLabel->
1586 "Out[316]=",ExpressionUUID->"bd34e0eb-7af1-496e-b12e-7c99ea039ccf"],
1587
1588Cell[BoxData["False"], "Output",
1589 CellChangeTimes->{{3.778426952859618*^9, 3.778427006353282*^9},
1590 3.7784270466168947`*^9, {3.778427136891416*^9, 3.778427170642054*^9},
1591 3.778427242232361*^9, {3.7784280890666943`*^9, 3.778428102924094*^9}, {
1592 3.778428361667014*^9, 3.778428397072022*^9}, {3.7784286637049513`*^9,
1593 3.778428679722171*^9}, 3.778428736319353*^9, {3.778428886000354*^9,
1594 3.778428896887869*^9}, 3.7784289915193367`*^9, 3.778429036027306*^9,
1595 3.778429547751265*^9, {3.7784296551896133`*^9, 3.7784296749873257`*^9}, {
1596 3.7784302497489223`*^9, 3.77843027519016*^9}, {3.778430314460853*^9,
1597 3.778430354473002*^9}},
1598 CellLabel->
1599 "Out[317]=",ExpressionUUID->"75bde40d-6932-4d5e-97aa-26f033400e6a"],
1600
1601Cell[BoxData[
1602 RowBox[{
1603 RowBox[{
1604 FractionBox[
1605 RowBox[{
1606 RowBox[{"2", " ",
1607 RowBox[{"f", "[",
1608 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1609 RowBox[{
1610 RowBox[{"Cot", "[", "\[Theta]", "]"}], " ",
1611 RowBox[{"g", "[",
1612 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1613 RowBox[{
1614 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1615 RowBox[{
1616 SuperscriptBox["h",
1617 TagBox[
1618 RowBox[{"(",
1619 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1620 Derivative],
1621 MultilineFunction->None], "[",
1622 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1623 RowBox[{
1624 SuperscriptBox["g",
1625 TagBox[
1626 RowBox[{"(",
1627 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1628 Derivative],
1629 MultilineFunction->None], "[",
1630 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "+",
1631 RowBox[{
1632 SuperscriptBox["f",
1633 TagBox[
1634 RowBox[{"(",
1635 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1636 Derivative],
1637 MultilineFunction->None], "[",
1638 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "\[Equal]",
1639 RowBox[{"-",
1640 FractionBox[
1641 RowBox[{"B0", " ",
1642 RowBox[{"(",
1643 RowBox[{
1644 RowBox[{"2", " ",
1645 SuperscriptBox["r", "3"]}], "+",
1646 SuperscriptBox["R", "3"]}], ")"}], " ",
1647 RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
1648 RowBox[{"2", " ",
1649 SuperscriptBox["r", "2"]}]]}]}]], "Output",
1650 CellChangeTimes->{{3.778426952859618*^9, 3.778427006353282*^9},
1651 3.7784270466168947`*^9, {3.778427136891416*^9, 3.778427170642054*^9},
1652 3.778427242232361*^9, {3.7784280890666943`*^9, 3.778428102924094*^9}, {
1653 3.778428361667014*^9, 3.778428397072022*^9}, {3.7784286637049513`*^9,
1654 3.778428679722171*^9}, 3.778428736319353*^9, {3.778428886000354*^9,
1655 3.778428896887869*^9}, 3.7784289915193367`*^9, 3.778429036027306*^9,
1656 3.778429547751265*^9, {3.7784296551896133`*^9, 3.7784296749873257`*^9}, {
1657 3.7784302497489223`*^9, 3.77843027519016*^9}, {3.778430314460853*^9,
1658 3.778430354622347*^9}},
1659 CellLabel->
1660 "Out[318]=",ExpressionUUID->"ee8c10cd-57b3-42a6-aed7-4e0446847d1f"],
1661
1662Cell[BoxData[
1663 RowBox[{"{",
1664 RowBox[{
1665 RowBox[{
1666 RowBox[{"-",
1667 FractionBox[
1668 RowBox[{
1669 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1670 RowBox[{"(",
1671 RowBox[{
1672 RowBox[{
1673 RowBox[{"-",
1674 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], " ",
1675 RowBox[{"(",
1676 RowBox[{
1677 FractionBox[
1678 RowBox[{
1679 RowBox[{"g", "[",
1680 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1681 RowBox[{
1682 SuperscriptBox["f",
1683 TagBox[
1684 RowBox[{"(",
1685 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1686 Derivative],
1687 MultilineFunction->None], "[",
1688 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"],
1689 "+",
1690 RowBox[{
1691 SuperscriptBox["g",
1692 TagBox[
1693 RowBox[{"(",
1694 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1695 Derivative],
1696 MultilineFunction->None], "[",
1697 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], ")"}]}],
1698 "-",
1699 FractionBox[
1700 RowBox[{
1701 RowBox[{
1702 SuperscriptBox["h",
1703 TagBox[
1704 RowBox[{"(",
1705 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1706 Derivative],
1707 MultilineFunction->None], "[",
1708 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1709 RowBox[{
1710 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1711 RowBox[{
1712 SuperscriptBox["f",
1713 TagBox[
1714 RowBox[{"(",
1715 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
1716 Derivative],
1717 MultilineFunction->None], "[",
1718 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1719 RowBox[{"r", " ",
1720 RowBox[{
1721 SuperscriptBox["h",
1722 TagBox[
1723 RowBox[{"(",
1724 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
1725 Derivative],
1726 MultilineFunction->None], "[",
1727 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}]}], "r"]}],
1728 ")"}]}], "r"]}], "+",
1729 FractionBox[
1730 RowBox[{
1731 FractionBox[
1732 RowBox[{
1733 RowBox[{
1734 SuperscriptBox["g",
1735 TagBox[
1736 RowBox[{"(",
1737 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1738 Derivative],
1739 MultilineFunction->None], "[",
1740 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1741 RowBox[{
1742 SuperscriptBox["f",
1743 TagBox[
1744 RowBox[{"(",
1745 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
1746 Derivative],
1747 MultilineFunction->None], "[",
1748 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "+",
1749 RowBox[{
1750 SuperscriptBox["g",
1751 TagBox[
1752 RowBox[{"(",
1753 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
1754 Derivative],
1755 MultilineFunction->None], "[",
1756 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"]}], ",",
1757 RowBox[{
1758 FractionBox[
1759 RowBox[{
1760 RowBox[{"g", "[",
1761 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1762 RowBox[{
1763 SuperscriptBox["f",
1764 TagBox[
1765 RowBox[{"(",
1766 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1767 Derivative],
1768 MultilineFunction->None], "[",
1769 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
1770 SuperscriptBox["r", "2"]], "+",
1771 FractionBox[
1772 RowBox[{
1773 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1774 RowBox[{"(",
1775 RowBox[{
1776 FractionBox[
1777 RowBox[{
1778 RowBox[{
1779 RowBox[{"Cot", "[", "\[Theta]", "]"}], " ",
1780 RowBox[{
1781 SuperscriptBox["h",
1782 TagBox[
1783 RowBox[{"(",
1784 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1785 Derivative],
1786 MultilineFunction->None], "[",
1787 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "-",
1788 RowBox[{
1789 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1790 RowBox[{
1791 SuperscriptBox["g",
1792 TagBox[
1793 RowBox[{"(",
1794 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
1795 Derivative],
1796 MultilineFunction->None], "[",
1797 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1798 RowBox[{
1799 SuperscriptBox["h",
1800 TagBox[
1801 RowBox[{"(",
1802 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
1803 Derivative],
1804 MultilineFunction->None], "[",
1805 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "-",
1806
1807 RowBox[{
1808 RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
1809 RowBox[{"(",
1810 RowBox[{
1811 FractionBox[
1812 RowBox[{
1813 RowBox[{"g", "[",
1814 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1815 RowBox[{
1816 SuperscriptBox["f",
1817 TagBox[
1818 RowBox[{"(",
1819 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1820 Derivative],
1821 MultilineFunction->None], "[",
1822 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"],
1823 "+",
1824 RowBox[{
1825 SuperscriptBox["g",
1826 TagBox[
1827 RowBox[{"(",
1828 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1829 Derivative],
1830 MultilineFunction->None], "[",
1831 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], ")"}]}]}],
1832 ")"}]}], "r"], "-",
1833 FractionBox[
1834 RowBox[{
1835 RowBox[{
1836 SuperscriptBox["g",
1837 TagBox[
1838 RowBox[{"(",
1839 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1840 Derivative],
1841 MultilineFunction->None], "[",
1842 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1843 RowBox[{
1844 SuperscriptBox["f",
1845 TagBox[
1846 RowBox[{"(",
1847 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
1848 Derivative],
1849 MultilineFunction->None], "[",
1850 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "-",
1851 RowBox[{
1852 SuperscriptBox["g",
1853 TagBox[
1854 RowBox[{"(",
1855 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
1856 Derivative],
1857 MultilineFunction->None], "[",
1858 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], ",",
1859 RowBox[{
1860 FractionBox[
1861 RowBox[{
1862 RowBox[{"h", "[",
1863 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1864 RowBox[{
1865 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1866 RowBox[{
1867 SuperscriptBox["f",
1868 TagBox[
1869 RowBox[{"(",
1870 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1871 Derivative],
1872 MultilineFunction->None], "[",
1873 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1874 RowBox[{"r", " ",
1875 RowBox[{
1876 SuperscriptBox["h",
1877 TagBox[
1878 RowBox[{"(",
1879 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1880 Derivative],
1881 MultilineFunction->None], "[",
1882 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}]}],
1883 SuperscriptBox["r", "2"]], "-",
1884 FractionBox[
1885 RowBox[{
1886 FractionBox[
1887 RowBox[{
1888 RowBox[{
1889 RowBox[{"-",
1890 SuperscriptBox[
1891 RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], " ",
1892 RowBox[{"h", "[",
1893 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1894 RowBox[{
1895 RowBox[{"Cot", "[", "\[Theta]", "]"}], " ",
1896 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1897 RowBox[{
1898 SuperscriptBox["g",
1899 TagBox[
1900 RowBox[{"(",
1901 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1902 Derivative],
1903 MultilineFunction->None], "[",
1904 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1905 RowBox[{
1906 RowBox[{"Cot", "[", "\[Theta]", "]"}], " ",
1907 RowBox[{
1908 SuperscriptBox["h",
1909 TagBox[
1910 RowBox[{"(",
1911 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
1912 Derivative],
1913 MultilineFunction->None], "[",
1914 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "-",
1915 RowBox[{
1916 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1917 RowBox[{
1918 SuperscriptBox["g",
1919 TagBox[
1920 RowBox[{"(",
1921 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
1922 Derivative],
1923 MultilineFunction->None], "[",
1924 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1925 RowBox[{
1926 SuperscriptBox["h",
1927 TagBox[
1928 RowBox[{"(",
1929 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
1930 Derivative],
1931 MultilineFunction->None], "[",
1932 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "r"], "+",
1933 FractionBox[
1934 RowBox[{
1935 RowBox[{"h", "[",
1936 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}], "-",
1937 RowBox[{
1938 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1939 RowBox[{
1940 SuperscriptBox["f",
1941 TagBox[
1942 RowBox[{"(",
1943 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
1944 Derivative],
1945 MultilineFunction->None], "[",
1946 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1947 RowBox[{"r", " ",
1948 RowBox[{
1949 SuperscriptBox["h",
1950 TagBox[
1951 RowBox[{"(",
1952 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1953 Derivative],
1954 MultilineFunction->None], "[",
1955 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}]}], "r"]}],
1956 "r"], "-",
1957 FractionBox[
1958 RowBox[{
1959 RowBox[{"2", " ",
1960 RowBox[{
1961 SuperscriptBox["h",
1962 TagBox[
1963 RowBox[{"(",
1964 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
1965 Derivative],
1966 MultilineFunction->None], "[",
1967 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "-",
1968 RowBox[{
1969 RowBox[{"Csc", "[", "\[Theta]", "]"}], " ",
1970 RowBox[{
1971 SuperscriptBox["f",
1972 TagBox[
1973 RowBox[{"(",
1974 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
1975 Derivative],
1976 MultilineFunction->None], "[",
1977 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "+",
1978 RowBox[{"r", " ",
1979 RowBox[{
1980 SuperscriptBox["h",
1981 TagBox[
1982 RowBox[{"(",
1983 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
1984 Derivative],
1985 MultilineFunction->None], "[",
1986 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}]}], "r"]}]}],
1987 "}"}]], "Output",
1988 CellChangeTimes->{{3.778426952859618*^9, 3.778427006353282*^9},
1989 3.7784270466168947`*^9, {3.778427136891416*^9, 3.778427170642054*^9},
1990 3.778427242232361*^9, {3.7784280890666943`*^9, 3.778428102924094*^9}, {
1991 3.778428361667014*^9, 3.778428397072022*^9}, {3.7784286637049513`*^9,
1992 3.778428679722171*^9}, 3.778428736319353*^9, {3.778428886000354*^9,
1993 3.778428896887869*^9}, 3.7784289915193367`*^9, 3.778429036027306*^9,
1994 3.778429547751265*^9, {3.7784296551896133`*^9, 3.7784296749873257`*^9}, {
1995 3.7784302497489223`*^9, 3.77843027519016*^9}, {3.778430314460853*^9,
1996 3.7784303547788486`*^9}},
1997 CellLabel->
1998 "Out[319]=",ExpressionUUID->"5fd14b34-47a1-4764-87f4-69b20f61a0e3"]
1999}, Open ]],
2000
2001Cell[CellGroupData[{
2002
2003Cell[BoxData[
2004 RowBox[{"FullSimplify", "[",
2005 RowBox[{"Curl", "[",
2006 RowBox[{
2007 RowBox[{"{",
2008 RowBox[{"0", ",", "0", ",",
2009 RowBox[{"F\[Phi]", "[",
2010 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], "}"}], ",",
2011 RowBox[{"{",
2012 RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}], ",",
2013 "\"\<Spherical\>\""}], "]"}], "]"}]], "Input",
2014 CellChangeTimes->{{3.778427790714099*^9, 3.778427831493136*^9}, {
2015 3.7784279102775593`*^9, 3.778427944512424*^9}, {3.77842819746513*^9,
2016 3.7784281982403803`*^9}},ExpressionUUID->"ed220b22-809b-4bdb-b821-\
2017a8b32e430fb9"],
2018
2019Cell[BoxData[
2020 RowBox[{"{",
2021 RowBox[{
2022 RowBox[{"-",
2023 FractionBox[
2024 RowBox[{"B0", " ",
2025 RowBox[{"(",
2026 RowBox[{
2027 RowBox[{"2", " ",
2028 SuperscriptBox["r", "3"]}], "+",
2029 SuperscriptBox["R", "3"]}], ")"}], " ", "\[Phi]", " ",
2030 RowBox[{"(",
2031 RowBox[{"1", "+",
2032 RowBox[{"3", " ",
2033 RowBox[{"Cos", "[",
2034 RowBox[{"2", " ", "\[Theta]"}], "]"}]}]}], ")"}]}],
2035 RowBox[{"4", " ",
2036 SuperscriptBox["r", "2"]}]]}], ",",
2037 RowBox[{"3", " ", "B0", " ", "r", " ", "\[Phi]", " ",
2038 RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
2039 RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", "0"}], "}"}]], "Output",
2040 CellChangeTimes->{3.778427834163745*^9, 3.778427914429837*^9,
2041 3.778427945026279*^9},
2042 CellLabel->"Out[60]=",ExpressionUUID->"c1e34510-5730-4f96-b3c2-a9e4d5d1798d"],
2043
2044Cell[BoxData[
2045 RowBox[{"{",
2046 RowBox[{
2047 RowBox[{
2048 RowBox[{"-", "3"}], " ", "B0", " ",
2049 RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ",",
2050 RowBox[{"-",
2051 FractionBox[
2052 RowBox[{"B0", " ",
2053 RowBox[{"(",
2054 RowBox[{
2055 RowBox[{"2", " ",
2056 SuperscriptBox["r", "3"]}], "+",
2057 SuperscriptBox["R", "3"]}], ")"}], " ",
2058 RowBox[{"(",
2059 RowBox[{"1", "+",
2060 RowBox[{"3", " ",
2061 RowBox[{"Cos", "[",
2062 RowBox[{"2", " ", "\[Theta]"}], "]"}]}]}], ")"}], " ",
2063 RowBox[{"Csc", "[", "\[Theta]", "]"}]}],
2064 RowBox[{"4", " ",
2065 SuperscriptBox["r", "3"]}]]}], ",",
2066 RowBox[{"-",
2067 FractionBox[
2068 RowBox[{"3", " ", "B0", " ",
2069 SuperscriptBox["R", "3"], " ", "\[Phi]", " ",
2070 RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
2071 RowBox[{"Sin", "[", "\[Theta]", "]"}]}],
2072 SuperscriptBox["r", "3"]]}]}], "}"}]], "Output",
2073 CellChangeTimes->{3.778427834163745*^9, 3.778427914429837*^9,
2074 3.778427945338106*^9},
2075 CellLabel->"Out[61]=",ExpressionUUID->"66245dfd-41f4-42f7-93a7-dd109bfec952"]
2076}, Open ]],
2077
2078Cell[CellGroupData[{
2079
2080Cell[BoxData[{
2081 RowBox[{"Clear", "[",
2082 RowBox[{"f", ",", "g", ",", "h", ",", "B", ",", "A", ",", "\[CapitalPsi]"}],
2083 "]"}], "\[IndentingNewLine]",
2084 RowBox[{
2085 RowBox[{"r", "[",
2086 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2087 SqrtBox[
2088 RowBox[{
2089 SuperscriptBox["x", "2"], "+",
2090 SuperscriptBox["y", "2"], "+",
2091 SuperscriptBox["z", "2"]}]]}], "\[IndentingNewLine]",
2092 RowBox[{
2093 RowBox[{"\[Theta]", "[",
2094 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2095 RowBox[{"ArcCos", "[",
2096 FractionBox["x",
2097 RowBox[{"r", "[",
2098 RowBox[{"x", ",", "y", ",", "z"}], "]"}]],
2099 "]"}]}], "\[IndentingNewLine]",
2100 RowBox[{
2101 RowBox[{"\[Phi]", "[",
2102 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2103 RowBox[{"ArcTan", "[",
2104 RowBox[{"z", ",", "y"}], "]"}]}], "\[IndentingNewLine]",
2105 RowBox[{
2106 RowBox[{"rhat", "[",
2107 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2108 RowBox[{"{",
2109 RowBox[{
2110 RowBox[{"Cos", "[",
2111 RowBox[{"\[Theta]", "[",
2112 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}], ",",
2113 RowBox[{
2114 RowBox[{"Sin", "[",
2115 RowBox[{"\[Theta]", "[",
2116 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
2117 RowBox[{"Sin", "[",
2118 RowBox[{"\[Phi]", "[",
2119 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], ",",
2120 RowBox[{
2121 RowBox[{"Sin", "[",
2122 RowBox[{"\[Theta]", "[",
2123 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
2124 RowBox[{"Cos", "[",
2125 RowBox[{"\[Phi]", "[",
2126 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}],
2127 "}"}]}], "\[IndentingNewLine]",
2128 RowBox[{
2129 RowBox[{
2130 RowBox[{"thetahat", "[",
2131 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2132 RowBox[{"{",
2133 RowBox[{
2134 RowBox[{"-",
2135 RowBox[{"Sin", "[",
2136 RowBox[{"\[Theta]", "[",
2137 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], ",",
2138 RowBox[{
2139 RowBox[{"Cos", "[",
2140 RowBox[{"\[Theta]", "[",
2141 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
2142 RowBox[{"Sin", "[",
2143 RowBox[{"\[Phi]", "[",
2144 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], ",",
2145 RowBox[{
2146 RowBox[{"Cos", "[",
2147 RowBox[{"\[Theta]", "[",
2148 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}],
2149 RowBox[{"Cos", "[",
2150 RowBox[{"\[Phi]", "[",
2151 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}], "}"}]}],
2152 "\[IndentingNewLine]",
2153 RowBox[{"(*",
2154 RowBox[{
2155 RowBox[{"f", "[",
2156 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2157 RowBox[{
2158 RowBox[{
2159 RowBox[{
2160 RowBox[{"-",
2161 FractionBox["1", "2"]}], "B0", " ",
2162 SuperscriptBox["x", "2"]}], " ", "+",
2163 RowBox[{
2164 FractionBox[
2165 RowBox[{"B0", " ",
2166 SuperscriptBox["R", "3"]}],
2167 RowBox[{"2",
2168 SqrtBox[
2169 RowBox[{
2170 SuperscriptBox["x", "2"], "+",
2171 SuperscriptBox["y", "2"], "+",
2172 SuperscriptBox["z", "2"]}]]}]], "\[IndentingNewLine]",
2173 RowBox[{"g", "[",
2174 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}]}]}], ":=",
2175 RowBox[{
2176 RowBox[{"0", "\[IndentingNewLine]",
2177 RowBox[{"h", "[",
2178 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}]}], ":=", "0"}]}]}],
2179 "*)"}]}], "\[IndentingNewLine]",
2180 RowBox[{
2181 RowBox[{"Fx", "[",
2182 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2183 RowBox[{"f", "[",
2184 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[IndentingNewLine]",
2185 RowBox[{
2186 RowBox[{"Fy", "[",
2187 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2188 RowBox[{"g", "[",
2189 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[IndentingNewLine]",
2190 RowBox[{
2191 RowBox[{"Fz", "[",
2192 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2193 RowBox[{"h", "[",
2194 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[IndentingNewLine]",
2195 RowBox[{
2196 RowBox[{"\[CapitalPsi]", "[",
2197 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2198 RowBox[{"FullSimplify", "[",
2199 RowBox[{"Div", "[",
2200 RowBox[{
2201 RowBox[{"{",
2202 RowBox[{
2203 RowBox[{"Fx", "[",
2204 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2205 RowBox[{"Fy", "[",
2206 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2207 RowBox[{"Fz", "[",
2208 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "}"}], ",",
2209 RowBox[{"{",
2210 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}],
2211 "]"}]}], "\[IndentingNewLine]",
2212 RowBox[{
2213 RowBox[{"B", "[",
2214 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2215 RowBox[{"FullSimplify", "[",
2216 RowBox[{"Grad", "[",
2217 RowBox[{
2218 RowBox[{"\[CapitalPsi]", "[",
2219 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2220 RowBox[{"{",
2221 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}],
2222 "]"}]}], "\[IndentingNewLine]",
2223 RowBox[{
2224 RowBox[{"A", "[",
2225 RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=",
2226 RowBox[{"FullSimplify", "[",
2227 RowBox[{"Curl", "[",
2228 RowBox[{
2229 RowBox[{"{",
2230 RowBox[{
2231 RowBox[{"Fx", "[",
2232 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2233 RowBox[{"Fy", "[",
2234 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2235 RowBox[{"Fz", "[",
2236 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "}"}], ",",
2237 RowBox[{"{",
2238 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}],
2239 "]"}]}], "\[IndentingNewLine]",
2240 RowBox[{
2241 RowBox[{
2242 RowBox[{"\[CapitalPsi]", "[",
2243 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "===",
2244 RowBox[{"FullSimplify", "[",
2245 RowBox[{
2246 RowBox[{
2247 RowBox[{"-", "B0"}], " ",
2248 RowBox[{"r", "[",
2249 RowBox[{"x", ",", "y", ",", "z"}], "]"}], " ",
2250 RowBox[{"Cos", "[",
2251 RowBox[{"\[Theta]", "[",
2252 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], "-",
2253 RowBox[{
2254 FractionBox["1", "2"], "B0", " ",
2255 FractionBox[
2256 SuperscriptBox["R", "3"],
2257 SuperscriptBox[
2258 RowBox[{"r", "[",
2259 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "2"]],
2260 RowBox[{"Cos", "[",
2261 RowBox[{"\[Theta]", "[",
2262 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}], "]"}]}],
2263 RowBox[{"(*",
2264 RowBox[{
2265 "Do", " ", "we", " ", "get", " ", "the", " ", "correct", " ", "scalar",
2266 " ",
2267 RowBox[{"potential", "?"}]}], "*)"}]}], "\[IndentingNewLine]",
2268 RowBox[{
2269 RowBox[{
2270 RowBox[{"FullSimplify", "[",
2271 RowBox[{"Curl", "[",
2272 RowBox[{
2273 RowBox[{"A", "[",
2274 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2275 RowBox[{"{",
2276 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "]"}], "===",
2277 RowBox[{"FullSimplify", "[",
2278 RowBox[{"B", "[",
2279 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}],
2280 RowBox[{"(*",
2281 RowBox[{
2282 "Do", " ", "we", " ", "get", " ", "the", " ", "correct", " ", "vector",
2283 " ",
2284 RowBox[{"potential", "?"}]}], "*)"}]}], "\[IndentingNewLine]",
2285 RowBox[{
2286 RowBox[{"\[CapitalPsi]", "[",
2287 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "==",
2288 RowBox[{"FullSimplify", "[",
2289 RowBox[{
2290 RowBox[{
2291 RowBox[{"-", "B0"}], " ",
2292 RowBox[{"r", "[",
2293 RowBox[{"x", ",", "y", ",", "z"}], "]"}], " ",
2294 RowBox[{"Cos", "[",
2295 RowBox[{"\[Theta]", "[",
2296 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], "-",
2297 RowBox[{
2298 FractionBox["1", "2"], "B0", " ",
2299 FractionBox[
2300 SuperscriptBox["R", "3"],
2301 SuperscriptBox[
2302 RowBox[{"r", "[",
2303 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "2"]],
2304 RowBox[{"Cos", "[",
2305 RowBox[{"\[Theta]", "[",
2306 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}],
2307 "]"}]}], "\[IndentingNewLine]",
2308 RowBox[{
2309 RowBox[{"Curl", "[",
2310 RowBox[{
2311 RowBox[{"A", "[",
2312 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2313 RowBox[{"{",
2314 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "\[Equal]",
2315 RowBox[{"B", "[",
2316 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[IndentingNewLine]",
2317 RowBox[{"DSolve", "[",
2318 RowBox[{
2319 RowBox[{"{",
2320 RowBox[{
2321 RowBox[{
2322 RowBox[{"\[CapitalPsi]", "[",
2323 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "==",
2324 RowBox[{"FullSimplify", "[",
2325 RowBox[{
2326 RowBox[{
2327 RowBox[{"-", "B0"}], " ",
2328 RowBox[{"r", "[",
2329 RowBox[{"x", ",", "y", ",", "z"}], "]"}], " ",
2330 RowBox[{"Cos", "[",
2331 RowBox[{"\[Theta]", "[",
2332 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}], "-",
2333 RowBox[{
2334 FractionBox["1", "2"], "B0", " ",
2335 FractionBox[
2336 SuperscriptBox["R", "3"],
2337 SuperscriptBox[
2338 RowBox[{"r", "[",
2339 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "2"]],
2340 RowBox[{"Cos", "[",
2341 RowBox[{"\[Theta]", "[",
2342 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "]"}]}]}], "]"}]}], ",",
2343
2344 RowBox[{
2345 RowBox[{
2346 RowBox[{"Curl", "[",
2347 RowBox[{
2348 RowBox[{"A", "[",
2349 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2350 RowBox[{"{",
2351 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "[",
2352 RowBox[{"[", "1", "]"}], "]"}], "\[Equal]",
2353 RowBox[{
2354 RowBox[{"B", "[",
2355 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "[",
2356 RowBox[{"[", "1", "]"}], "]"}]}], ",",
2357 RowBox[{
2358 RowBox[{
2359 RowBox[{"Curl", "[",
2360 RowBox[{
2361 RowBox[{"A", "[",
2362 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2363 RowBox[{"{",
2364 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "[",
2365 RowBox[{"[", "2", "]"}], "]"}], "\[Equal]",
2366 RowBox[{
2367 RowBox[{"B", "[",
2368 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "[",
2369 RowBox[{"[", "2", "]"}], "]"}]}]}], "}"}], ",",
2370 RowBox[{"{",
2371 RowBox[{
2372 RowBox[{"f", "[",
2373 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2374 RowBox[{"g", "[",
2375 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2376 RowBox[{"h", "[",
2377 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "}"}], ",",
2378 RowBox[{"{",
2379 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}], "Input",
2380 CellChangeTimes->{{3.778836657565962*^9, 3.7788366722099752`*^9}, {
2381 3.778836750595047*^9, 3.778836991013844*^9}, {3.7788370354775133`*^9,
2382 3.77883709331485*^9}, {3.7788371718062572`*^9, 3.778837177235631*^9}, {
2383 3.778837384165189*^9, 3.7788374623248377`*^9}, {3.778837552867947*^9,
2384 3.778837594469739*^9}, {3.778837663754035*^9, 3.778837906704462*^9}},
2385 CellLabel->
2386 "In[142]:=",ExpressionUUID->"ae9948ed-1ce7-4c24-84ab-dad71301e257"],
2387
2388Cell[BoxData["False"], "Output",
2389 CellChangeTimes->{{3.77883785947855*^9, 3.778837874804983*^9},
2390 3.778837908340274*^9},
2391 CellLabel->
2392 "Out[154]=",ExpressionUUID->"0f188046-03c5-4098-8535-294ec195df0b"],
2393
2394Cell[BoxData["False"], "Output",
2395 CellChangeTimes->{{3.77883785947855*^9, 3.778837874804983*^9},
2396 3.7788379084145517`*^9},
2397 CellLabel->
2398 "Out[155]=",ExpressionUUID->"444143e8-8b1b-4e7c-a1ea-0b9275f1f540"],
2399
2400Cell[BoxData[
2401 RowBox[{
2402 RowBox[{
2403 RowBox[{
2404 SuperscriptBox["h",
2405 TagBox[
2406 RowBox[{"(",
2407 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
2408 Derivative],
2409 MultilineFunction->None], "[",
2410 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2411 RowBox[{
2412 SuperscriptBox["g",
2413 TagBox[
2414 RowBox[{"(",
2415 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
2416 Derivative],
2417 MultilineFunction->None], "[",
2418 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2419 RowBox[{
2420 SuperscriptBox["f",
2421 TagBox[
2422 RowBox[{"(",
2423 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
2424 Derivative],
2425 MultilineFunction->None], "[",
2426 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[Equal]",
2427 RowBox[{
2428 FractionBox["1", "2"], " ", "B0", " ", "x", " ",
2429 RowBox[{"(",
2430 RowBox[{
2431 RowBox[{"-", "2"}], "-",
2432 FractionBox[
2433 SuperscriptBox["R", "3"],
2434 SuperscriptBox[
2435 RowBox[{"(",
2436 RowBox[{
2437 SuperscriptBox["x", "2"], "+",
2438 SuperscriptBox["y", "2"], "+",
2439 SuperscriptBox["z", "2"]}], ")"}],
2440 RowBox[{"3", "/", "2"}]]]}], ")"}]}]}]], "Output",
2441 CellChangeTimes->{{3.77883785947855*^9, 3.778837874804983*^9},
2442 3.778837908416709*^9},
2443 CellLabel->
2444 "Out[156]=",ExpressionUUID->"606d2e73-8bb2-4203-9b90-04135cbdff03"],
2445
2446Cell[BoxData[
2447 RowBox[{
2448 RowBox[{"{",
2449 RowBox[{
2450 RowBox[{
2451 RowBox[{"-",
2452 RowBox[{
2453 SuperscriptBox["f",
2454 TagBox[
2455 RowBox[{"(",
2456 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
2457 Derivative],
2458 MultilineFunction->None], "[",
2459 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "-",
2460 RowBox[{
2461 SuperscriptBox["f",
2462 TagBox[
2463 RowBox[{"(",
2464 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
2465 Derivative],
2466 MultilineFunction->None], "[",
2467 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2468 RowBox[{
2469 SuperscriptBox["h",
2470 TagBox[
2471 RowBox[{"(",
2472 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
2473 Derivative],
2474 MultilineFunction->None], "[",
2475 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2476 RowBox[{
2477 SuperscriptBox["g",
2478 TagBox[
2479 RowBox[{"(",
2480 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2481 Derivative],
2482 MultilineFunction->None], "[",
2483 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], ",",
2484 RowBox[{
2485 RowBox[{"-",
2486 RowBox[{
2487 SuperscriptBox["g",
2488 TagBox[
2489 RowBox[{"(",
2490 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
2491 Derivative],
2492 MultilineFunction->None], "[",
2493 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "+",
2494 RowBox[{
2495 SuperscriptBox["h",
2496 TagBox[
2497 RowBox[{"(",
2498 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
2499 Derivative],
2500 MultilineFunction->None], "[",
2501 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2502 RowBox[{
2503 SuperscriptBox["f",
2504 TagBox[
2505 RowBox[{"(",
2506 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2507 Derivative],
2508 MultilineFunction->None], "[",
2509 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "-",
2510 RowBox[{
2511 SuperscriptBox["g",
2512 TagBox[
2513 RowBox[{"(",
2514 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
2515 Derivative],
2516 MultilineFunction->None], "[",
2517 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], ",",
2518 RowBox[{
2519 RowBox[{
2520 SuperscriptBox["g",
2521 TagBox[
2522 RowBox[{"(",
2523 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
2524 Derivative],
2525 MultilineFunction->None], "[",
2526 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "-",
2527 RowBox[{
2528 SuperscriptBox["h",
2529 TagBox[
2530 RowBox[{"(",
2531 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
2532 Derivative],
2533 MultilineFunction->None], "[",
2534 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2535 RowBox[{
2536 SuperscriptBox["f",
2537 TagBox[
2538 RowBox[{"(",
2539 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
2540 Derivative],
2541 MultilineFunction->None], "[",
2542 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "-",
2543 RowBox[{
2544 SuperscriptBox["h",
2545 TagBox[
2546 RowBox[{"(",
2547 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
2548 Derivative],
2549 MultilineFunction->None], "[",
2550 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]}], "}"}], "\[Equal]",
2551 RowBox[{"{",
2552 RowBox[{
2553 RowBox[{
2554 RowBox[{
2555 SuperscriptBox["h",
2556 TagBox[
2557 RowBox[{"(",
2558 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
2559 Derivative],
2560 MultilineFunction->None], "[",
2561 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2562 RowBox[{
2563 SuperscriptBox["g",
2564 TagBox[
2565 RowBox[{"(",
2566 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2567 Derivative],
2568 MultilineFunction->None], "[",
2569 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2570 RowBox[{
2571 SuperscriptBox["f",
2572 TagBox[
2573 RowBox[{"(",
2574 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
2575 Derivative],
2576 MultilineFunction->None], "[",
2577 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], ",",
2578 RowBox[{
2579 RowBox[{
2580 SuperscriptBox["h",
2581 TagBox[
2582 RowBox[{"(",
2583 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
2584 Derivative],
2585 MultilineFunction->None], "[",
2586 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2587 RowBox[{
2588 SuperscriptBox["g",
2589 TagBox[
2590 RowBox[{"(",
2591 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
2592 Derivative],
2593 MultilineFunction->None], "[",
2594 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2595 RowBox[{
2596 SuperscriptBox["f",
2597 TagBox[
2598 RowBox[{"(",
2599 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2600 Derivative],
2601 MultilineFunction->None], "[",
2602 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], ",",
2603 RowBox[{
2604 RowBox[{
2605 SuperscriptBox["h",
2606 TagBox[
2607 RowBox[{"(",
2608 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
2609 Derivative],
2610 MultilineFunction->None], "[",
2611 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2612 RowBox[{
2613 SuperscriptBox["g",
2614 TagBox[
2615 RowBox[{"(",
2616 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
2617 Derivative],
2618 MultilineFunction->None], "[",
2619 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2620 RowBox[{
2621 SuperscriptBox["f",
2622 TagBox[
2623 RowBox[{"(",
2624 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
2625 Derivative],
2626 MultilineFunction->None], "[",
2627 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]}], "}"}]}]], "Output",
2628 CellChangeTimes->{{3.77883785947855*^9, 3.778837874804983*^9},
2629 3.778837908445498*^9},
2630 CellLabel->
2631 "Out[157]=",ExpressionUUID->"56c9c5aa-23b8-4289-ba1d-f7e5b4e23ec6"],
2632
2633Cell[BoxData[
2634 RowBox[{"DSolve", "[",
2635 RowBox[{
2636 RowBox[{"{",
2637 RowBox[{
2638 RowBox[{
2639 RowBox[{
2640 RowBox[{
2641 SuperscriptBox["h",
2642 TagBox[
2643 RowBox[{"(",
2644 RowBox[{"0", ",", "0", ",", "1"}], ")"}],
2645 Derivative],
2646 MultilineFunction->None], "[",
2647 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2648 RowBox[{
2649 SuperscriptBox["g",
2650 TagBox[
2651 RowBox[{"(",
2652 RowBox[{"0", ",", "1", ",", "0"}], ")"}],
2653 Derivative],
2654 MultilineFunction->None], "[",
2655 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2656 RowBox[{
2657 SuperscriptBox["f",
2658 TagBox[
2659 RowBox[{"(",
2660 RowBox[{"1", ",", "0", ",", "0"}], ")"}],
2661 Derivative],
2662 MultilineFunction->None], "[",
2663 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[Equal]",
2664 RowBox[{
2665 FractionBox["1", "2"], " ", "B0", " ", "x", " ",
2666 RowBox[{"(",
2667 RowBox[{
2668 RowBox[{"-", "2"}], "-",
2669 FractionBox[
2670 SuperscriptBox["R", "3"],
2671 SuperscriptBox[
2672 RowBox[{"(",
2673 RowBox[{
2674 SuperscriptBox["x", "2"], "+",
2675 SuperscriptBox["y", "2"], "+",
2676 SuperscriptBox["z", "2"]}], ")"}],
2677 RowBox[{"3", "/", "2"}]]]}], ")"}]}]}], ",",
2678 RowBox[{
2679 RowBox[{
2680 RowBox[{"-",
2681 RowBox[{
2682 SuperscriptBox["f",
2683 TagBox[
2684 RowBox[{"(",
2685 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
2686 Derivative],
2687 MultilineFunction->None], "[",
2688 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "-",
2689 RowBox[{
2690 SuperscriptBox["f",
2691 TagBox[
2692 RowBox[{"(",
2693 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
2694 Derivative],
2695 MultilineFunction->None], "[",
2696 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2697 RowBox[{
2698 SuperscriptBox["h",
2699 TagBox[
2700 RowBox[{"(",
2701 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
2702 Derivative],
2703 MultilineFunction->None], "[",
2704 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2705 RowBox[{
2706 SuperscriptBox["g",
2707 TagBox[
2708 RowBox[{"(",
2709 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2710 Derivative],
2711 MultilineFunction->None], "[",
2712 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[Equal]",
2713 RowBox[{
2714 RowBox[{
2715 SuperscriptBox["h",
2716 TagBox[
2717 RowBox[{"(",
2718 RowBox[{"1", ",", "0", ",", "1"}], ")"}],
2719 Derivative],
2720 MultilineFunction->None], "[",
2721 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2722 RowBox[{
2723 SuperscriptBox["g",
2724 TagBox[
2725 RowBox[{"(",
2726 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2727 Derivative],
2728 MultilineFunction->None], "[",
2729 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2730 RowBox[{
2731 SuperscriptBox["f",
2732 TagBox[
2733 RowBox[{"(",
2734 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
2735 Derivative],
2736 MultilineFunction->None], "[",
2737 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]}], ",",
2738 RowBox[{
2739 RowBox[{
2740 RowBox[{"-",
2741 RowBox[{
2742 SuperscriptBox["g",
2743 TagBox[
2744 RowBox[{"(",
2745 RowBox[{"0", ",", "0", ",", "2"}], ")"}],
2746 Derivative],
2747 MultilineFunction->None], "[",
2748 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "+",
2749 RowBox[{
2750 SuperscriptBox["h",
2751 TagBox[
2752 RowBox[{"(",
2753 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
2754 Derivative],
2755 MultilineFunction->None], "[",
2756 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2757 RowBox[{
2758 SuperscriptBox["f",
2759 TagBox[
2760 RowBox[{"(",
2761 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2762 Derivative],
2763 MultilineFunction->None], "[",
2764 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "-",
2765 RowBox[{
2766 SuperscriptBox["g",
2767 TagBox[
2768 RowBox[{"(",
2769 RowBox[{"2", ",", "0", ",", "0"}], ")"}],
2770 Derivative],
2771 MultilineFunction->None], "[",
2772 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "\[Equal]",
2773 RowBox[{
2774 RowBox[{
2775 SuperscriptBox["h",
2776 TagBox[
2777 RowBox[{"(",
2778 RowBox[{"0", ",", "1", ",", "1"}], ")"}],
2779 Derivative],
2780 MultilineFunction->None], "[",
2781 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2782 RowBox[{
2783 SuperscriptBox["g",
2784 TagBox[
2785 RowBox[{"(",
2786 RowBox[{"0", ",", "2", ",", "0"}], ")"}],
2787 Derivative],
2788 MultilineFunction->None], "[",
2789 RowBox[{"x", ",", "y", ",", "z"}], "]"}], "+",
2790 RowBox[{
2791 SuperscriptBox["f",
2792 TagBox[
2793 RowBox[{"(",
2794 RowBox[{"1", ",", "1", ",", "0"}], ")"}],
2795 Derivative],
2796 MultilineFunction->None], "[",
2797 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]}]}], "}"}], ",",
2798 RowBox[{"{",
2799 RowBox[{
2800 RowBox[{"f", "[",
2801 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2802 RowBox[{"g", "[",
2803 RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
2804 RowBox[{"h", "[",
2805 RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "}"}], ",",
2806 RowBox[{"{",
2807 RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]], "Output",
2808 CellChangeTimes->{{3.77883785947855*^9, 3.778837874804983*^9},
2809 3.778837908449463*^9},
2810 CellLabel->
2811 "Out[158]=",ExpressionUUID->"565cd95a-408b-4304-856e-cc0266126a71"]
2812}, Open ]],
2813
2814Cell[CellGroupData[{
2815
2816Cell[BoxData[
2817 RowBox[{"Integrate", "[",
2818 RowBox[{
2819 FractionBox[
2820 RowBox[{
2821 FractionBox["1", "2"], " ", "B0", " ", "x", " ",
2822 SuperscriptBox["R", "3"]}],
2823 SuperscriptBox[
2824 RowBox[{"(",
2825 RowBox[{
2826 SuperscriptBox["x", "2"], "+",
2827 SuperscriptBox["y", "2"], "+",
2828 SuperscriptBox["z", "2"]}], ")"}],
2829 RowBox[{"3", "/", "2"}]]], ",", "x"}], "]"}]], "Input",
2830 CellChangeTimes->{{3.778837794254318*^9, 3.778837822011944*^9}},
2831 CellLabel->
2832 "In[101]:=",ExpressionUUID->"a7baca34-27ea-45f2-9b7b-f34fc12191b4"],
2833
2834Cell[BoxData[
2835 RowBox[{"-",
2836 FractionBox[
2837 RowBox[{"B0", " ",
2838 SuperscriptBox["R", "3"]}],
2839 RowBox[{"2", " ",
2840 SqrtBox[
2841 RowBox[{
2842 SuperscriptBox["x", "2"], "+",
2843 SuperscriptBox["y", "2"], "+",
2844 SuperscriptBox["z", "2"]}]]}]]}]], "Output",
2845 CellChangeTimes->{3.778837094339115*^9, 3.778837177835435*^9,
2846 3.778837440327745*^9, 3.77883763615163*^9, 3.778837822787962*^9},
2847 CellLabel->
2848 "Out[101]=",ExpressionUUID->"684787d6-7d49-4822-b25d-7679f13b746b"]
2849}, Open ]]
2850},
2851WindowSize->{1920, 1016},
2852WindowMargins->{{0, Automatic}, {0, Automatic}},
2853FrontEndVersion->"12.0 for Linux x86 (64-bit) (April 8, 2019)",
2854StyleDefinitions->"Default.nb"
2855]
2856(* End of Notebook Content *)
2857
2858(* Internal cache information *)
2859(*CellTagsOutline
2860CellTagsIndex->{}
2861*)
2862(*CellTagsIndex
2863CellTagsIndex->{}
2864*)
2865(*NotebookFileOutline
2866Notebook[{
2867Cell[CellGroupData[{
2868Cell[580, 22, 6199, 163, 337, "Input",ExpressionUUID->"06180fe6-75b2-4ab2-94a0-dcf9f2263c9a"],
2869Cell[6782, 187, 33265, 563, 377, 17679, 307, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"c7604bc4-daeb-4307-8062-feb03db86f17"]
2870}, Open ]],
2871Cell[CellGroupData[{
2872Cell[40084, 755, 1836, 43, 361, "Input",ExpressionUUID->"73ecd243-6f24-4e2b-9ca1-5faa63414ab9"],
2873Cell[41923, 800, 446, 9, 35, "Output",ExpressionUUID->"0e11c746-4c97-4c1c-a158-6325b85d08af"],
2874Cell[42372, 811, 468, 10, 35, "Output",ExpressionUUID->"19049c5f-53da-45a3-93ba-fc1ea34cc8b3"],
2875Cell[42843, 823, 365, 6, 35, "Output",ExpressionUUID->"de229508-91f6-4cbe-9fbe-1e6b6eaeac35"],
2876Cell[43211, 831, 367, 6, 35, "Output",ExpressionUUID->"7650d2e6-5111-479d-b8b3-ec9b8f1bf19e"],
2877Cell[43581, 839, 351, 6, 35, "Output",ExpressionUUID->"24283890-e80b-47e1-ac53-31a6c85c3d31"],
2878Cell[43935, 847, 368, 6, 35, "Output",ExpressionUUID->"1a8b562f-a95a-4bca-81a2-f995f97691e1"],
2879Cell[44306, 855, 366, 6, 35, "Output",ExpressionUUID->"ebb8d15a-8f5f-4720-9864-6d84389e5566"],
2880Cell[44675, 863, 369, 6, 35, "Output",ExpressionUUID->"f9077a15-2f2e-45f5-b575-6fc78d19f1f7"],
2881Cell[45047, 871, 466, 9, 40, "Output",ExpressionUUID->"7c585594-d6ee-43e4-905b-63bbfb1a94b4"]
2882}, Open ]],
2883Cell[CellGroupData[{
2884Cell[45550, 885, 4877, 126, 209, "Input",ExpressionUUID->"2debc42d-3879-4353-ada4-b3c025721e1f"],
2885Cell[50430, 1013, 11320, 309, 276, "Output",ExpressionUUID->"eef6708e-550b-4526-86af-56acaceaf30c"]
2886}, Open ]],
2887Cell[CellGroupData[{
2888Cell[61787, 1327, 1474, 45, 57, "Input",ExpressionUUID->"f8e2e83f-9f33-4f4d-a6fe-5d2d882b951a"],
2889Cell[63264, 1374, 1696, 50, 59, "Output",ExpressionUUID->"0e7c6d67-e99a-409b-a9e7-40a0b5056971"]
2890}, Open ]],
2891Cell[CellGroupData[{
2892Cell[64997, 1429, 5504, 143, 337, "Input",ExpressionUUID->"1f7440d1-ceb6-4475-b3c1-a5dcd41859d7"],
2893Cell[70504, 1574, 726, 11, 35, "Output",ExpressionUUID->"bd34e0eb-7af1-496e-b12e-7c99ea039ccf"],
2894Cell[71233, 1587, 726, 11, 35, "Output",ExpressionUUID->"75bde40d-6932-4d5e-97aa-26f033400e6a"],
2895Cell[71962, 1600, 2200, 59, 60, "Output",ExpressionUUID->"ee8c10cd-57b3-42a6-aed7-4e0446847d1f"],
2896Cell[74165, 1661, 11651, 336, 249, "Output",ExpressionUUID->"5fd14b34-47a1-4764-87f4-69b20f61a0e3"]
2897}, Open ]],
2898Cell[CellGroupData[{
2899Cell[85853, 2002, 597, 14, 31, "Input",ExpressionUUID->"ed220b22-809b-4bdb-b821-a8b32e430fb9"],
2900Cell[86453, 2018, 851, 23, 60, "Output",ExpressionUUID->"c1e34510-5730-4f96-b3c2-a9e4d5d1798d"],
2901Cell[87307, 2043, 1084, 31, 60, "Output",ExpressionUUID->"66245dfd-41f4-42f7-93a7-dd109bfec952"]
2902}, Open ]],
2903Cell[CellGroupData[{
2904Cell[88428, 2079, 10431, 306, 646, "Input",ExpressionUUID->"ae9948ed-1ce7-4c24-84ab-dad71301e257"],
2905Cell[98862, 2387, 206, 4, 35, "Output",ExpressionUUID->"0f188046-03c5-4098-8535-294ec195df0b"],
2906Cell[99071, 2393, 208, 4, 35, "Output",ExpressionUUID->"444143e8-8b1b-4e7c-a1ea-0b9275f1f540"],
2907Cell[99282, 2399, 1319, 44, 64, "Output",ExpressionUUID->"606d2e73-8bb2-4203-9b90-04135cbdff03"],
2908Cell[100604, 2445, 5536, 185, 67, "Output",ExpressionUUID->"56c9c5aa-23b8-4289-ba1d-f7e5b4e23ec6"],
2909Cell[106143, 2632, 5707, 178, 131, "Output",ExpressionUUID->"565cd95a-408b-4304-856e-cc0266126a71"]
2910}, Open ]],
2911Cell[CellGroupData[{
2912Cell[111887, 2815, 555, 16, 67, "Input",ExpressionUUID->"a7baca34-27ea-45f2-9b7b-f34fc12191b4"],
2913Cell[112445, 2833, 490, 14, 69, "Output",ExpressionUUID->"684787d6-7d49-4822-b25d-7679f13b746b"]
2914}, Open ]]
2915}
2916]
2917*)
2918