1 | (* Content-type: application/vnd.wolfram.mathematica *)
|
---|
2 |
|
---|
3 | (*** Wolfram Notebook File ***)
|
---|
4 | (* http://www.wolfram.com/nb *)
|
---|
5 |
|
---|
6 | (* CreatedBy='Mathematica 11.0' *)
|
---|
7 |
|
---|
8 | (*CacheID: 234*)
|
---|
9 | (* Internal cache information:
|
---|
10 | NotebookFileLineBreakTest
|
---|
11 | NotebookFileLineBreakTest
|
---|
12 | NotebookDataPosition[ 158, 7]
|
---|
13 | NotebookDataLength[ 28215, 689]
|
---|
14 | NotebookOptionsPosition[ 27173, 649]
|
---|
15 | NotebookOutlinePosition[ 27506, 664]
|
---|
16 | CellTagsIndexPosition[ 27463, 661]
|
---|
17 | WindowFrame->Normal*)
|
---|
18 |
|
---|
19 | (* Beginning of Notebook Content *)
|
---|
20 | Notebook[{
|
---|
21 | Cell[BoxData[{
|
---|
22 | RowBox[{
|
---|
23 | RowBox[{"\[Lambda]", "=", "17.369"}], ";"}], "\[IndentingNewLine]",
|
---|
24 | RowBox[{
|
---|
25 | RowBox[{"k", "=",
|
---|
26 | RowBox[{"1.388", "*",
|
---|
27 | SuperscriptBox["10",
|
---|
28 | RowBox[{"-", "16"}]]}]}], ";"}], "\[IndentingNewLine]",
|
---|
29 | RowBox[{
|
---|
30 | RowBox[{"G", "=",
|
---|
31 | RowBox[{"6.67", "*",
|
---|
32 | SuperscriptBox["10",
|
---|
33 | RowBox[{"-", "8"}]]}]}], ";"}], "\[IndentingNewLine]",
|
---|
34 | RowBox[{
|
---|
35 | RowBox[{"mH", "=",
|
---|
36 | RowBox[{"1.6733", "*",
|
---|
37 | SuperscriptBox["10",
|
---|
38 | RowBox[{"-", "24"}]]}]}], ";"}], "\[IndentingNewLine]",
|
---|
39 | RowBox[{
|
---|
40 | RowBox[{"M", "=",
|
---|
41 | RowBox[{"1.404", "*", "1.898", "*",
|
---|
42 | SuperscriptBox["10", "30"]}]}], ";"}], "\[IndentingNewLine]",
|
---|
43 | RowBox[{
|
---|
44 | RowBox[{"T0", "=",
|
---|
45 | SuperscriptBox["10", "4"]}], ";"}], "\[IndentingNewLine]",
|
---|
46 | RowBox[{
|
---|
47 | RowBox[{"r0", "=",
|
---|
48 | RowBox[{"1.736", "*", "6.9911", "*",
|
---|
49 | SuperscriptBox["10", "9"]}]}], ";"}], "\[IndentingNewLine]",
|
---|
50 | RowBox[{
|
---|
51 | RowBox[{"\[Rho]0", "=",
|
---|
52 | RowBox[{"3.2112", "*",
|
---|
53 | SuperscriptBox["10",
|
---|
54 | RowBox[{"-", "15"}]]}]}], ";"}], "\[IndentingNewLine]",
|
---|
55 | RowBox[{
|
---|
56 | RowBox[{"lScale", "=",
|
---|
57 | RowBox[{"3.427", "*",
|
---|
58 | SuperscriptBox["10", "11"]}]}], ";"}], "\[IndentingNewLine]",
|
---|
59 | RowBox[{
|
---|
60 | RowBox[{"velScale", "=", "3636589"}], ";"}], "\[IndentingNewLine]",
|
---|
61 | RowBox[{
|
---|
62 | RowBox[{"\[Rho]Scale", "=",
|
---|
63 | RowBox[{"3.2112", "*",
|
---|
64 | SuperscriptBox["10",
|
---|
65 | RowBox[{"-", "15"}]]}]}], ";"}], "\[IndentingNewLine]",
|
---|
66 | RowBox[{
|
---|
67 | RowBox[{"columnLength", "=",
|
---|
68 | RowBox[{"2.678", "*", "lScale"}]}], ";"}], "\[IndentingNewLine]",
|
---|
69 | RowBox[{
|
---|
70 | RowBox[{"cs", "=",
|
---|
71 | RowBox[{"0.25075", "*", "velScale"}]}], ";"}], "\[IndentingNewLine]",
|
---|
72 | RowBox[{
|
---|
73 | RowBox[{"\[Rho]cs", "=",
|
---|
74 | RowBox[{"1.28226", "*",
|
---|
75 | SuperscriptBox["10",
|
---|
76 | RowBox[{"-", "7"}]], "*", "\[Rho]Scale"}]}],
|
---|
77 | ";"}], "\[IndentingNewLine]",
|
---|
78 | RowBox[{
|
---|
79 | RowBox[{"rcs", "=",
|
---|
80 | RowBox[{"0.312048", "*", "lScale"}]}], ";"}], "\[IndentingNewLine]",
|
---|
81 | RowBox[{
|
---|
82 | RowBox[{"MgIIFrac", "=",
|
---|
83 | SuperscriptBox["10",
|
---|
84 | RowBox[{"-", "5"}]]}], ";"}], "\[IndentingNewLine]",
|
---|
85 | RowBox[{
|
---|
86 | RowBox[{"MgIIColDensity", "=",
|
---|
87 | RowBox[{"2", "*",
|
---|
88 | SuperscriptBox["10", "17"]}]}], ";"}], "\[IndentingNewLine]",
|
---|
89 | RowBox[{
|
---|
90 | RowBox[{"diskThickness", "=",
|
---|
91 | RowBox[{"0.3", "*", "lScale"}]}], ";"}]}], "Input",
|
---|
92 | CellChangeTimes->{{3.69599086532997*^9, 3.6959909593582973`*^9}, {
|
---|
93 | 3.695991257965865*^9, 3.695991286575967*^9}, {3.6959914950278397`*^9,
|
---|
94 | 3.695991514926338*^9}, {3.6959916336066637`*^9, 3.695991637623871*^9}, {
|
---|
95 | 3.695991679758903*^9, 3.695991695647307*^9}, {3.695993163291773*^9,
|
---|
96 | 3.695993163975801*^9}, {3.695993657191197*^9, 3.695993692984427*^9}, {
|
---|
97 | 3.695997247216477*^9, 3.695997255252109*^9}, {3.695997300979959*^9,
|
---|
98 | 3.695997301388824*^9}, {3.696000875246347*^9, 3.6960008840518017`*^9}, {
|
---|
99 | 3.6960009462391243`*^9, 3.696000948786314*^9}}],
|
---|
100 |
|
---|
101 | Cell[CellGroupData[{
|
---|
102 |
|
---|
103 | Cell[BoxData[{
|
---|
104 | RowBox[{
|
---|
105 | RowBox[{"ndH", "=",
|
---|
106 | FractionBox["MgIIColDensity",
|
---|
107 | RowBox[{"MgIIFrac", " ", "columnLength"}]]}],
|
---|
108 | ";"}], "\[IndentingNewLine]",
|
---|
109 | RowBox[{"Pd", "=",
|
---|
110 | RowBox[{"ndH", " ", "k", " ", "T0"}]}]}], "Input",
|
---|
111 | CellChangeTimes->{{3.695991697522257*^9, 3.6959917098592377`*^9}, {
|
---|
112 | 3.696000916554201*^9, 3.69600100915373*^9}}],
|
---|
113 |
|
---|
114 | Cell[BoxData["0.03024786908338714`"], "Output",
|
---|
115 | CellChangeTimes->{
|
---|
116 | 3.695991698732663*^9, 3.695991729233444*^9, {3.69600101634514*^9,
|
---|
117 | 3.6960010222842093`*^9}, 3.696001180142692*^9, 3.696001235659919*^9,
|
---|
118 | 3.6960014156359253`*^9, 3.696001477756415*^9, 3.6960015204184113`*^9}]
|
---|
119 | }, Open ]],
|
---|
120 |
|
---|
121 | Cell[CellGroupData[{
|
---|
122 |
|
---|
123 | Cell[BoxData[{
|
---|
124 | RowBox[{"Clear", "[", "const", "]"}], "\[IndentingNewLine]",
|
---|
125 | RowBox[{"v", "=",
|
---|
126 | RowBox[{"Solve", "[",
|
---|
127 | RowBox[{
|
---|
128 | RowBox[{
|
---|
129 | RowBox[{"\[Psi]", "-",
|
---|
130 | RowBox[{"Log", "[", "\[Psi]", "]"}]}], "\[Equal]",
|
---|
131 | RowBox[{
|
---|
132 | RowBox[{"4",
|
---|
133 | RowBox[{"Log", "[", "\[Xi]", "]"}]}], "+",
|
---|
134 | FractionBox["4", "\[Xi]"], "+", "const"}]}], ",", "\[Psi]"}],
|
---|
135 | "]"}]}]}], "Input",
|
---|
136 | CellChangeTimes->{{3.69599086532997*^9, 3.6959909593582973`*^9}, {
|
---|
137 | 3.695991257965865*^9, 3.695991286575967*^9}, {3.6959914950278397`*^9,
|
---|
138 | 3.69599150258272*^9}, {3.695993060389048*^9, 3.695993175341618*^9}, {
|
---|
139 | 3.695993505258654*^9, 3.695993528763309*^9}, {3.695993573570038*^9,
|
---|
140 | 3.695993587507979*^9}, {3.6959936953768883`*^9, 3.6959937063828373`*^9}, {
|
---|
141 | 3.695997307856081*^9, 3.695997308349112*^9}, {3.696001460723878*^9,
|
---|
142 | 3.696001468067156*^9}}],
|
---|
143 |
|
---|
144 | Cell[BoxData[
|
---|
145 | TemplateBox[{
|
---|
146 | "Solve","ifun",
|
---|
147 | "\"Inverse functions are being used by \
|
---|
148 | \\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
|
---|
149 | Reduce for complete solution information.\"",2,907,47,25837098451705269290,
|
---|
150 | "Local"},
|
---|
151 | "MessageTemplate"]], "Message", "MSG",
|
---|
152 | CellChangeTimes->{{3.695990953805581*^9, 3.695990963176866*^9},
|
---|
153 | 3.69599126106061*^9, 3.6959914265697203`*^9, 3.695991725272403*^9, {
|
---|
154 | 3.6959932390358477`*^9, 3.695993263609375*^9}, 3.695993590704383*^9, {
|
---|
155 | 3.695993659602387*^9, 3.6959937071877413`*^9}, {3.695997304600624*^9,
|
---|
156 | 3.695997331171455*^9}, 3.696001022357257*^9, 3.696001180199938*^9,
|
---|
157 | 3.696001235689953*^9, 3.696001415678618*^9, {3.6960014687256413`*^9,
|
---|
158 | 3.696001477841704*^9}, 3.6960015205035553`*^9}],
|
---|
159 |
|
---|
160 | Cell[BoxData[
|
---|
161 | RowBox[{"{",
|
---|
162 | RowBox[{"{",
|
---|
163 | RowBox[{"\[Psi]", "\[Rule]",
|
---|
164 | RowBox[{"-",
|
---|
165 | RowBox[{"ProductLog", "[",
|
---|
166 | RowBox[{"-",
|
---|
167 | FractionBox[
|
---|
168 | SuperscriptBox["\[ExponentialE]",
|
---|
169 | RowBox[{
|
---|
170 | RowBox[{"-", "const"}], "-",
|
---|
171 | FractionBox["4", "\[Xi]"]}]],
|
---|
172 | SuperscriptBox["\[Xi]", "4"]]}], "]"}]}]}], "}"}], "}"}]], "Output",
|
---|
173 | CellChangeTimes->{{3.695990953636207*^9, 3.695990963188539*^9},
|
---|
174 | 3.695991261076329*^9, 3.695991426591557*^9, 3.695991725278962*^9, {
|
---|
175 | 3.6959932390462008`*^9, 3.695993263618636*^9}, 3.695993590715846*^9, {
|
---|
176 | 3.6959936596106358`*^9, 3.6959937071992188`*^9}, {3.6959973046092787`*^9,
|
---|
177 | 3.6959973311786413`*^9}, 3.6960010223680477`*^9, 3.696001180213558*^9,
|
---|
178 | 3.696001235698072*^9, 3.6960014156927156`*^9, {3.696001468733602*^9,
|
---|
179 | 3.696001477852221*^9}, 3.696001520512999*^9}]
|
---|
180 | }, Open ]],
|
---|
181 |
|
---|
182 | Cell[CellGroupData[{
|
---|
183 |
|
---|
184 | Cell[BoxData[
|
---|
185 | RowBox[{"Manipulate", "[",
|
---|
186 | RowBox[{
|
---|
187 | RowBox[{"Plot", "[",
|
---|
188 | RowBox[{
|
---|
189 | RowBox[{"{",
|
---|
190 | RowBox[{
|
---|
191 | SqrtBox[
|
---|
192 | RowBox[{"-",
|
---|
193 | RowBox[{"ProductLog", "[",
|
---|
194 | RowBox[{"-",
|
---|
195 | FractionBox[
|
---|
196 | SuperscriptBox["\[ExponentialE]",
|
---|
197 | RowBox[{
|
---|
198 | RowBox[{"-", "const"}], "-",
|
---|
199 | FractionBox["4", "\[Xi]"]}]],
|
---|
200 | SuperscriptBox["\[Xi]", "4"]]}], "]"}]}]], ",",
|
---|
201 | SqrtBox[
|
---|
202 | RowBox[{"-",
|
---|
203 | RowBox[{"ProductLog", "[",
|
---|
204 | RowBox[{
|
---|
205 | RowBox[{"-", "1"}], ",",
|
---|
206 | RowBox[{"-",
|
---|
207 | FractionBox[
|
---|
208 | SuperscriptBox["\[ExponentialE]",
|
---|
209 | RowBox[{
|
---|
210 | RowBox[{"-", "const"}], "-",
|
---|
211 | FractionBox["4", "\[Xi]"]}]],
|
---|
212 | SuperscriptBox["\[Xi]", "4"]]}]}], "]"}]}]]}], "}"}], ",",
|
---|
213 | RowBox[{"{",
|
---|
214 | RowBox[{"\[Xi]", ",", "0.001", ",", "3"}], "}"}], ",",
|
---|
215 | RowBox[{"PlotRange", "\[Rule]",
|
---|
216 | RowBox[{"{",
|
---|
217 | RowBox[{"0", ",", "2"}], "}"}]}]}], "]"}], ",",
|
---|
218 | RowBox[{"{",
|
---|
219 | RowBox[{"const", ",",
|
---|
220 | RowBox[{"-", "4.5"}], ",", "5", ",", "0.1"}], "}"}]}], "]"}]], "Input",
|
---|
221 | CellChangeTimes->{{3.6959940220744257`*^9, 3.6959940543158617`*^9}, {
|
---|
222 | 3.6959949239961433`*^9, 3.695994926246552*^9}, {3.695999918929987*^9,
|
---|
223 | 3.695999919692638*^9}}],
|
---|
224 |
|
---|
225 | Cell[BoxData[
|
---|
226 | TagBox[
|
---|
227 | StyleBox[
|
---|
228 | DynamicModuleBox[{$CellContext`const$$ = -4.5, Typeset`show$$ = True,
|
---|
229 | Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
|
---|
230 | Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
|
---|
231 | "\"untitled\"", Typeset`specs$$ = {{
|
---|
232 | Hold[$CellContext`const$$], -4.5, 5, 0.1}}, Typeset`size$$ = {
|
---|
233 | 360., {116., 122.}}, Typeset`update$$ = 0, Typeset`initDone$$,
|
---|
234 | Typeset`skipInitDone$$ = True, $CellContext`const$83773$$ = 0},
|
---|
235 | DynamicBox[Manipulate`ManipulateBoxes[
|
---|
236 | 1, StandardForm, "Variables" :> {$CellContext`const$$ = -4.5},
|
---|
237 | "ControllerVariables" :> {
|
---|
238 | Hold[$CellContext`const$$, $CellContext`const$83773$$, 0]},
|
---|
239 | "OtherVariables" :> {
|
---|
240 | Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
|
---|
241 | Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
|
---|
242 | Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
|
---|
243 | Typeset`skipInitDone$$}, "Body" :> Plot[{
|
---|
244 | Sqrt[-
|
---|
245 | ProductLog[-(
|
---|
246 | E^(-$CellContext`const$$ -
|
---|
247 | 4/$CellContext`\[Xi])/$CellContext`\[Xi]^4)]],
|
---|
248 | Sqrt[-
|
---|
249 | ProductLog[-1, -(
|
---|
250 | E^(-$CellContext`const$$ -
|
---|
251 | 4/$CellContext`\[Xi])/$CellContext`\[Xi]^4)]]}, {$CellContext`\
|
---|
252 | \[Xi], 0.001, 3}, PlotRange -> {0, 2}],
|
---|
253 | "Specifications" :> {{$CellContext`const$$, -4.5, 5, 0.1}},
|
---|
254 | "Options" :> {}, "DefaultOptions" :> {}],
|
---|
255 | ImageSizeCache->{407., {159., 166.}},
|
---|
256 | SingleEvaluation->True],
|
---|
257 | Deinitialization:>None,
|
---|
258 | DynamicModuleValues:>{},
|
---|
259 | SynchronousInitialization->True,
|
---|
260 | UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
|
---|
261 | UnsavedVariables:>{Typeset`initDone$$},
|
---|
262 | UntrackedVariables:>{Typeset`size$$}], "Manipulate",
|
---|
263 | Deployed->True,
|
---|
264 | StripOnInput->False],
|
---|
265 | Manipulate`InterpretManipulate[1]]], "Output",
|
---|
266 | CellChangeTimes->{{3.695994039524988*^9, 3.6959940552136707`*^9},
|
---|
267 | 3.695994927159683*^9, 3.6959999201466713`*^9, 3.6960010226212997`*^9,
|
---|
268 | 3.6960011805126667`*^9, 3.696001235936687*^9, 3.6960014159413548`*^9,
|
---|
269 | 3.696001478149151*^9, 3.6960015206494226`*^9}]
|
---|
270 | }, Open ]],
|
---|
271 |
|
---|
272 | Cell[BoxData[{
|
---|
273 | RowBox[{"Clear", "[",
|
---|
274 | RowBox[{"r", ",", "const"}], "]"}], "\[IndentingNewLine]",
|
---|
275 | RowBox[{
|
---|
276 | RowBox[{"v2", "=",
|
---|
277 | RowBox[{
|
---|
278 | RowBox[{"-",
|
---|
279 | RowBox[{"ProductLog", "[",
|
---|
280 | RowBox[{
|
---|
281 | RowBox[{"-",
|
---|
282 | SuperscriptBox["\[ExponentialE]",
|
---|
283 | RowBox[{"const", "-",
|
---|
284 | FractionBox[
|
---|
285 | RowBox[{"4", " ", "rcs"}], "r"]}]]}], " ",
|
---|
286 | FractionBox[
|
---|
287 | SuperscriptBox["rcs", "4"],
|
---|
288 | SuperscriptBox["r", "4"]]}], "]"}]}], "*",
|
---|
289 | SuperscriptBox["cs", "2"]}]}], ";"}], "\[IndentingNewLine]",
|
---|
290 | RowBox[{
|
---|
291 | RowBox[{"\[Rho]w", "=",
|
---|
292 | RowBox[{"\[Rho]cs", "*",
|
---|
293 | SuperscriptBox["\[ExponentialE]",
|
---|
294 | RowBox[{
|
---|
295 | RowBox[{
|
---|
296 | FractionBox[
|
---|
297 | RowBox[{
|
---|
298 | RowBox[{"-", "2"}], " ", "rcs"}], "r"],
|
---|
299 | RowBox[{"(",
|
---|
300 | RowBox[{
|
---|
301 | FractionBox["r", "rcs"], "-", "1"}], ")"}]}], "+",
|
---|
302 | RowBox[{
|
---|
303 | FractionBox["1", "2"],
|
---|
304 | RowBox[{"(",
|
---|
305 | RowBox[{"1", "+",
|
---|
306 | RowBox[{"ProductLog", "[",
|
---|
307 | RowBox[{
|
---|
308 | RowBox[{"-",
|
---|
309 | SuperscriptBox["\[ExponentialE]",
|
---|
310 | RowBox[{"const", "-",
|
---|
311 | FractionBox[
|
---|
312 | RowBox[{"4", " ", "rcs"}], "r"]}]]}], " ",
|
---|
313 | FractionBox[
|
---|
314 | SuperscriptBox["rcs", "4"],
|
---|
315 | SuperscriptBox["r", "4"]]}], "]"}]}], ")"}]}]}]]}]}],
|
---|
316 | ";"}], "\[IndentingNewLine]",
|
---|
317 | RowBox[{
|
---|
318 | RowBox[{"Pram", "=",
|
---|
319 | RowBox[{"\[Rho]w", " ", "v2"}]}], ";"}], "\[IndentingNewLine]",
|
---|
320 | RowBox[{
|
---|
321 | RowBox[{"Ptherm", "=",
|
---|
322 | RowBox[{
|
---|
323 | FractionBox["\[Rho]w", "mH"], "k", " ", "T0"}]}],
|
---|
324 | ";"}], "\[IndentingNewLine]",
|
---|
325 | RowBox[{
|
---|
326 | RowBox[{"Pw", "=",
|
---|
327 | RowBox[{"Pram", "+", "Ptherm"}]}], ";"}]}], "Input",
|
---|
328 | CellChangeTimes->{{3.69599662607765*^9, 3.695996690706132*^9}, {
|
---|
329 | 3.695996746018608*^9, 3.695996756569799*^9}, {3.695997339881444*^9,
|
---|
330 | 3.695997439029274*^9}, {3.69599749308746*^9, 3.695997550132204*^9}, {
|
---|
331 | 3.6959976072488127`*^9, 3.695997609672474*^9}, {3.695997713311327*^9,
|
---|
332 | 3.695997734727893*^9}, {3.695998409404564*^9, 3.695998414540102*^9}, {
|
---|
333 | 3.69600136333967*^9, 3.696001371745738*^9}}],
|
---|
334 |
|
---|
335 | Cell[CellGroupData[{
|
---|
336 |
|
---|
337 | Cell[BoxData[{
|
---|
338 | RowBox[{
|
---|
339 | RowBox[{"const", "=", "42.07675"}], ";"}], "\[IndentingNewLine]",
|
---|
340 | RowBox[{
|
---|
341 | RowBox[{"r", "=", "diskThickness"}], ";"}], "\[IndentingNewLine]",
|
---|
342 | RowBox[{"Re", "[", "Pw", "]"}], "\[IndentingNewLine]", "Pd"}], "Input",
|
---|
343 | CellChangeTimes->{{3.69599773752188*^9, 3.695997838615436*^9}, {
|
---|
344 | 3.6959978875274487`*^9, 3.6959979198140373`*^9}, {3.695997961136684*^9,
|
---|
345 | 3.6959979627314777`*^9}, {3.695997997553903*^9, 3.695998017899214*^9}, {
|
---|
346 | 3.695998294420507*^9, 3.695998297139968*^9}, {3.69599850382899*^9,
|
---|
347 | 3.695998504004663*^9}, {3.695998707064492*^9, 3.695998748744124*^9}, {
|
---|
348 | 3.6960010428924522`*^9, 3.696001164529364*^9}, {3.6960013077566423`*^9,
|
---|
349 | 3.696001382718727*^9}}],
|
---|
350 |
|
---|
351 | Cell[BoxData["0.030247423986732917`"], "Output",
|
---|
352 | CellChangeTimes->{{3.695998707778885*^9, 3.695998749077634*^9}, {
|
---|
353 | 3.6960010223968353`*^9, 3.696001180304755*^9}, 3.696001235728973*^9, {
|
---|
354 | 3.6960012998193817`*^9, 3.696001314099737*^9}, {3.696001345468378*^9,
|
---|
355 | 3.696001383115275*^9}, 3.696001415723221*^9, 3.696001477898816*^9,
|
---|
356 | 3.69600152073048*^9}],
|
---|
357 |
|
---|
358 | Cell[BoxData["0.03024786908338714`"], "Output",
|
---|
359 | CellChangeTimes->{{3.695998707778885*^9, 3.695998749077634*^9}, {
|
---|
360 | 3.6960010223968353`*^9, 3.696001180304755*^9}, 3.696001235728973*^9, {
|
---|
361 | 3.6960012998193817`*^9, 3.696001314099737*^9}, {3.696001345468378*^9,
|
---|
362 | 3.696001383115275*^9}, 3.696001415723221*^9, 3.696001477898816*^9,
|
---|
363 | 3.696001520731721*^9}]
|
---|
364 | }, Open ]],
|
---|
365 |
|
---|
366 | Cell[CellGroupData[{
|
---|
367 |
|
---|
368 | Cell[BoxData[{
|
---|
369 | RowBox[{"Clear", "[",
|
---|
370 | RowBox[{"r", ",", "const"}], "]"}], "\[IndentingNewLine]",
|
---|
371 | RowBox[{
|
---|
372 | RowBox[{"const", "=", "42.07675"}], ";"}], "\[IndentingNewLine]",
|
---|
373 | RowBox[{
|
---|
374 | RowBox[{"plot1", "=",
|
---|
375 | RowBox[{"Plot", "[",
|
---|
376 | RowBox[{
|
---|
377 | RowBox[{"{",
|
---|
378 | RowBox[{"Pd", ",",
|
---|
379 | RowBox[{"Re", "[", "Pw", "]"}]}], "}"}], ",",
|
---|
380 | RowBox[{"{",
|
---|
381 | RowBox[{"r", ",", "r0", ",",
|
---|
382 | RowBox[{"1.1", "diskThickness"}]}], "}"}], ",",
|
---|
383 | RowBox[{"PlotStyle", "\[Rule]",
|
---|
384 | RowBox[{"{",
|
---|
385 | RowBox[{"Blue", ",", "Orange"}], "}"}]}], ",",
|
---|
386 | RowBox[{"PlotRange", "\[Rule]",
|
---|
387 | RowBox[{"{",
|
---|
388 | RowBox[{"0", ",", "0.1"}], "}"}]}]}], "]"}]}],
|
---|
389 | ";"}], "\[IndentingNewLine]",
|
---|
390 | RowBox[{
|
---|
391 | RowBox[{"const", "=", "31.345"}], ";"}], "\[IndentingNewLine]",
|
---|
392 | RowBox[{
|
---|
393 | RowBox[{"plot2", "=",
|
---|
394 | RowBox[{"Plot", "[",
|
---|
395 | RowBox[{
|
---|
396 | RowBox[{"Re", "[", "Pw", "]"}], ",",
|
---|
397 | RowBox[{"{",
|
---|
398 | RowBox[{"r", ",", "r0", ",",
|
---|
399 | RowBox[{"1.1", "diskThickness"}]}], "}"}], ",",
|
---|
400 | RowBox[{"PlotStyle", "\[Rule]",
|
---|
401 | RowBox[{"{", "Green", "}"}]}], ",",
|
---|
402 | RowBox[{"PlotRange", "\[Rule]",
|
---|
403 | RowBox[{"{",
|
---|
404 | RowBox[{"0", ",", "0.1"}], "}"}]}]}], "]"}]}],
|
---|
405 | ";"}], "\[IndentingNewLine]",
|
---|
406 | RowBox[{"Show", "[",
|
---|
407 | RowBox[{"plot1", ",", "plot2"}], "]"}]}], "Input",
|
---|
408 | CellChangeTimes->{{3.695998140118844*^9, 3.695998163363934*^9}, {
|
---|
409 | 3.6959981989904757`*^9, 3.695998284960801*^9}, {3.695998485032653*^9,
|
---|
410 | 3.695998487943101*^9}, {3.695998684823001*^9, 3.695998687638802*^9}, {
|
---|
411 | 3.695998766874777*^9, 3.695998840902828*^9}, {3.6959988737934713`*^9,
|
---|
412 | 3.6959989258875027`*^9}, {3.6959989649791327`*^9, 3.695999003088049*^9}, {
|
---|
413 | 3.6960010949695663`*^9, 3.696001095935904*^9}, {3.696001176488276*^9,
|
---|
414 | 3.696001220650689*^9}, {3.696001261024543*^9, 3.6960012805960913`*^9},
|
---|
415 | 3.696001492222665*^9}],
|
---|
416 |
|
---|
417 | Cell[BoxData[
|
---|
418 | GraphicsBox[{{{{}, {},
|
---|
419 | {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.],
|
---|
420 | LineBox[CompressedData["
|
---|
421 | 1:eJxTTMoPSmViYGAwAWIQ/SM6abnGbDanitZPij4/59lfeKd/bXYxB5y/vPEv
|
---|
422 | C78PF5y/apGQdYEPH5wvYbxwSjmLIJw/db52buhNITh/D+fnjR+uisD5qkeP
|
---|
423 | X5q1QQzOt6i7Gc+0WQLOZz0U68exRgrOFwl/LyHbLAPnn3251/99oxyc/+SZ
|
---|
424 | j2GGvgKcby9X8lpdUhHOz7+yM/qYmBKc72DMZpXDrAznPxMoPPeBWQXOf2k8
|
---|
425 | dfKR/wh+7//9x+a/UoXz2bw4N0S+VIPzFWwj2aWvq8P5/OuPi+y+oQHnR6e9
|
---|
426 | D1p1VRPO9zgm+3/BQS04n2tpVmLZQW04P1dnn2HwBh04X/fnKaP6Wbpw/iGX
|
---|
427 | by87Z+jB+T8sNPjntOrD+UxhNqVuzgZwvpmRY3XaQQR/V5KnBZe5IZy/8lJC
|
---|
428 | wNxtCP6LadXyW3SN4Pxrfz+1FS1C8PWXVHoqKBrD+TfmMR8OnI7gv7kxZ3qR
|
---|
429 | uAmcH5BuqSzej+AnzTByT2YxhfPvc1gfm9eM4K856/Yn9heC/+RiYi9PtRmc
|
---|
430 | f7ri5raknwg+U0nIdJt8czh/ybp7l1jfI/jTbHOOBqVZIMIjPyzA/TaC7/jA
|
---|
431 | 30w7yhLOn7PU5/KkCwg+vy6D40ohKzi/acvmdftDEHwANjaIvg==
|
---|
432 | "]]},
|
---|
433 | {RGBColor[1, 0.5, 0], AbsoluteThickness[1.6], Opacity[1.],
|
---|
434 | LineBox[CompressedData["
|
---|
435 | 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAASCSf8maGKkKamZmZmZm5P0jGHf+g
|
---|
436 | wSpCE9OrkTAhuT8KpWphdsErQnJE44jbT7c/bSy+MVOwLEI0PuaQ5Mm1Py35
|
---|
437 | yjJ/mi1CbzsyxtpvtD/CRPbpiZguQnQf/fzzG7M/+DgoD5yFL0J4j8qcBvyx
|
---|
438 | PwJWPHVGQzBC1BPfRf/fsD82MkF7ZsEwQhF49KpexK8/umJJOAo3MUL6J0ht
|
---|
439 | gRKuP6nSYFCdtjFCUO0uY29irD/olnsftC0yQh1xqT1i76o/1v3yhnKiMkIC
|
---|
440 | rhrFyZ6pPy+keUkgITNCRux2ZuxMqD/YngPDUZczQoizgu/jKKc/7Nicl3IX
|
---|
441 | NELvPCNCJAOmP1BnOSMXjzRCQhOFjkkEpT9imDJHYwQ1Qnq+gTf+GqQ/3wg7
|
---|
442 | xp6DNUIE7JbB1S6jP6zNRvxd+jVC21L/Jupgoj/k0WGNDHs2QkPkFNstkKE/
|
---|
443 | y3jZtmL5NkLOOtT6ltCgPwJ0VJc8bzdCwo7b8soooD+krt7SBe83QkBgoryX
|
---|
444 | +54/lj1sxVJmOEKtTeBoQs+dPzZvVlBH2zhClt0jbzu5nD9B4E82K1o5QrSZ
|
---|
445 | Bw6UnJs/nKVM05LQOUIjrmgrvaGaP9hBuoaj0jlC+iiP5nudmj8T3ic6tNQ5
|
---|
446 | QiVGHqk7mZo/ihYDodXYOULiZiFDvpCaP3mHuW4Y4TlCusdvwc9/mj9WaSYK
|
---|
447 | nvE5QpXbQZ0jXpo/Dy0AQakSOkJq21aJjBuaP0rJbfS5FDpCU5fpjmsXmj+G
|
---|
448 | ZdunyhY6QtGffZFLE5o//p22DuwaOkL4YGWMDguaP+wObdwuIzpC7UJdUKD6
|
---|
449 | mT/I8Nl3tDM6QveFpcry2Zk/BI1HK8U1OkJDq5F64dWZPz8ptd7VNzpCU+N8
|
---|
450 | ItHRmT+2YZBF9zs6QlNaFFmzyZk/pdJGEzpEOkIk96hYg7mZP+ButMZKRjpC
|
---|
451 | WGXuv3m1mT8cCyJ6W0g6QgC3vRxxsZk/lEP94HxMOkL6wMG1YqmZP9DfapSN
|
---|
452 | TjpCsqRa8VylmT8LfNhHnlA6Qt3CRSFYoZk/RhhG+65SOkLNfjVFVJ2ZP4K0
|
---|
453 | s66/VDpChVrcXFGZmT+dJnTN
|
---|
454 | "]]}}, {}, {}}, {{{}, {},
|
---|
455 | {RGBColor[0, 1, 0], AbsoluteThickness[1.6], Opacity[1.],
|
---|
456 | LineBox[CompressedData["
|
---|
457 | 1:eJwV1vk/FIoagHFRGMuM3TBMYxCSrGMZ8vLKknQIUYYyIku2EKlJEcqWbAmV
|
---|
458 | pUW5RUWSUpayRBqypqROiZMkOaEs994fns/3X3iUfMKc/Xh5eHj6/tf/XWD5
|
---|
459 | lKsX8aPsT5sJmcXLkNk+ZDF1kx/dDFrbRPMuwwaG45uqOn60OfajYpf+ZXAh
|
---|
460 | mokaDfBj5RY9OBN9CSobpSOtxQWwNyjkVrT0RbDWShch0AQw3GK+b6qpCN4W
|
---|
461 | 8F7v2iyAlpL6AerhRUCI/D7k4iCAXLFxfNBTCL6qHeY+pwVQuyZnW1t5AfzJ
|
---|
462 | giHV8wIo62Xzct67ALJX7h+avCqATmcK/VIpBfB0sOxqeLMAglbEwq3cCyCf
|
---|
463 | yhE6sSyAzsERz0fz8oE7rT1QFCmIBfP+HU+78sCfdT1sX4Ig7u80vvEnPw9W
|
---|
464 | 2hQIylmCaCjcak3xzQPNUoJZRaUgPn6cuji9kgvJLn+X1k0K4rKRLbiY54JZ
|
---|
465 | 3fmQ/n0ETPjRYvf9fTa8VhEVKAglYKohKko/yIagrFMlnscJ+O12lfzA2WzI
|
---|
466 | Dwp//XchAXPlFacpFtkwq2BvMttPQCeJUj6vm1lQHr+8luQghFsbF4s2556D
|
---|
467 | TQP9KWKeQvh7kHvic/g5uLOxkigRLITHPvyjTP3rHNS93kuWThfCMGL0HYLQ
|
---|
468 | OWhXbdSkdAnh3Bn9CF5SJkx0JDirOQjj0x7JpC6tDAimsgbVPYVxnHOwVOPf
|
---|
469 | dJiJ0PfcGCyMH9bc/mrZkA4LlE9+WunCGDdYP5rnmA6Codax+l3C6Js0xBPC
|
---|
470 | SQN1CcEScBBBwr1IS425FLh1YEzF0lMEg3bw5jx6ngI6j+puYrAIti2cShjO
|
---|
471 | TwFj38Bq63QRlAw7eKtySwrY1b5o3d4lgvtbNtjGZZ6BQI+Mb+4Oosj6su3p
|
---|
472 | 222nYbrSL2KPpyhKBjuOqiifhgg+83mPYFFcqRJeHVxKhqO3pnn2pouilfHN
|
---|
473 | 3CN3kyF1xVHKt0sUQwzmNkSvT4aKMgnTcAciXuF6G8qIJkEdu9PQh0VEqjCz
|
---|
474 | 88R0IrTSEvVcg4i4L/b9OT1uIny8/K+G8RkiFvzMbgjLTQT5oiEyzzMiDr9b
|
---|
475 | y7OZlghpOZd/ZZqSsLR+09dZq1NQ6Ow+G29PQjMlQ+kEjVNwQ1xsOnIPCSO5
|
---|
476 | tBQH0il4lhn/2T2GhO+HO1zPjSTAUppv3/pqEnJiMtyeRieAIUoPu0uLYYY/
|
---|
477 | +6Tyg3hoKP0xwFUQQ5Z1qa5USTxsXdPdt01FDGOXEs8zUuLBuTGZa6ovhpvl
|
---|
478 | WnUEPeMh1Hyhbf1OMZzjLVd4xxcP5cyR2i/pYugz1nmYyzoJZP3S3Ji14pjK
|
---|
479 | 8CFqusTBC08+kU5hcfRcGEzl0YkDTrLfKaqkOLZrrIbLisbB2LBGxHMlcXS9
|
---|
480 | Xf+Cv/043Dh5z1ESxFE919N/2OI4GHW3CFXFimO+/6BQyxYOuAWOnxyfFkdp
|
---|
481 | C8a9+95HQTDHbsHklziuGzHOzN56FOofV4RlLIuj4REvlWL1o0AVC9trICKB
|
---|
482 | qXaEu9Y/YmG8dt40QUMCQ+0rDB8nxkL0WsK8oq8EUhbmds5WH4G8Ys2QXcMS
|
---|
483 | aH6sw/GtTgyYN5i/sf0ggetObOn4IxsD42922jInJXDy9iW29Wo0GMscUVq/
|
---|
484 | KIEM+1r2ru5oeJP+rH+CLIn3Q4r59oZGA/WolzlntyQO7sNrjfcPww3XTNKV
|
---|
485 | QUlU8SmyOLIvCpwiyjh57yXx+YHu49rbo2Ax8/7k6S+SeDR1LpDfKArsO0da
|
---|
486 | guclMY01ZCZBioJvlupHDGWlcKCUJ6awMRL0tJvGOtykMCPm4GcDjUh4TPh5
|
---|
487 | d6ZfCusoRfE/iBFQ4RntwXonhYkU+ZGtq4cgv2qRt/WTFFY6P4u4/f0QROzi
|
---|
488 | cS36KYVfhx41NHAPgUap6C9rcWlso63GDeQcgvPG6swiB2mUHC9pblM8BOH+
|
---|
489 | Xs3WLdLY/eHssWoIh731Y0F3XkhjGSdJL0AvHLaL+kpSeqVRIKWzT0s1HDZU
|
---|
490 | B/nOjEljstCY71ehcHi3EsNftCKN5bQ2wp7KMLA/n20/YyKD5h3ldp6fQ0H1
|
---|
491 | eVtv4R0ZnBhnsKYCQ0BIZCn8ap0M/hqdtLLYGQLTzjqkykYZvBtHsKoxDoHa
|
---|
492 | sQvbm7gyyNYZKf4jEAJ2S4HPvszIoLVjQNWaG8EQpC9Sa6Ari7yfGMWPvh2E
|
---|
493 | ylKngu67shgh316ScDYIsicSjYYeyuJnZvfpyNggiNZ+2P+hSRbVhpst4nyD
|
---|
494 | ABqUJP7tkcXIrdHHxphBwB2aTaXMyqKPnFbI64lA+EnK4wTokVFdiabjuC0Q
|
---|
495 | jOOG9/FWk3FiV9qbs5QAsM3MiRmvJyPtwW9iEyEA3Ep2ZL5oJiOb9SZNYMEf
|
---|
496 | Djc3PcnuJSMoTI1x+/zhHn+FovIsGVfMeXJ3ZvqDZubREStdOUyLUmiaEfAH
|
---|
497 | agnFPalKDnO3O66M8h8Arbv9oYEP5HB9+aN09rwfmDVnJu94KodKfWVjc1/8
|
---|
498 | gPWJr1b6lRyWzpOid3T4wQX1Kanr03IoEfPsdku6H0jcfdzbqiWPbquD56tk
|
---|
499 | /GBds9dfgrfkUdSu0XiC4QsegmdKfavl0a/vei9o+ELlX/fmGuvlsezj7otX
|
---|
500 | FHzBbYS/KLZDHh97eZ3I5POF63NVX/4Zl8ceDXbnr579YKfGG/9SiYKv+u8I
|
---|
501 | /wrfD+np16uz8ykok+ry0OmBD0i5fycrnlJAqqJtaLoPG/ZlvWCT0xSQ86N8
|
---|
502 | 5IY7Gyo6r1VI5ijgXkv1J68c2GBh4WkmdEUBX07K3zIzYsNBjY59880KWLnm
|
---|
503 | QXWWCBua/5Rd7+FVRCf22ILCQ28IL3EzSE5QxGezPwe95bzh5WSD4/d4KvK0
|
---|
504 | U2dgwgs89xD6fFKoqEs6/Iky5AVT7a67B85RcdE1TWtduxeI3Pjq3VBMxS8V
|
---|
505 | QQmr5V7gcEAuIq2BigbNVYVZAV7Q9TEqV22Rimn0gnHqlCe8GNEc3he+Huui
|
---|
506 | HNYcX2LBp3EH3QBtGlr9Xrp4DDyg+RRDh6RPwyf/yeVJ1vOAYhpVu9aQhg1u
|
---|
507 | OzULVT3Aw+P7prXmNBy4z658L+wB3JdZ6iUONPw52eI2OrQHHtUMrB8KpOHH
|
---|
508 | hU91pVF7IDvBm2h3lYYeLm9OrN7bDUCN+qomp4TbJ/lHdLe5A5nB8KMqKuFh
|
---|
509 | lepozhZ3mNn+a1RKSQk11jwncnXdoSz2SO8aDSW0+PyFmC3vDuv6OQ9HjJWw
|
---|
510 | /XHUjpNTbtCZlnQ6c7cSxkTMv13OcgP3xfPK8/lKaO8UGGDx9y4I63vIapWh
|
---|
511 | 40fTYsr6S65goc/PDOZTxspNP1VNkpxhXOxQ9wyfCnJmRYp6LjjBpH5ezrNV
|
---|
512 | Faypn+7p+r0DMlafthb/o4qYl5H9c/924Lcn3NkzuQHDd5JJw7N2QNuyR4Ay
|
---|
513 | qIbvcy5Ud83ZAKmqTerRkDpuaaldXiZaA+vAd+eKfg3cJlN3gHTQCuxaFVdL
|
---|
514 | mjaiWoEn6ywRQehaEDu6SRMN4p0ShRssIGTTE12XO5vwdDtV19gaQGvxhd6J
|
---|
515 | Qi00f3m/vshpCzRv/TWZcmEzkq9kl0X5mcKCsTrpYpI2No+peow8NwFeN7PD
|
---|
516 | NlY66Jb9asF+kzEY6lkeO9Ckg9+6TdqvPjGEep9txkJGuqi1bv4jO5kBN3u9
|
---|
517 | nS7V6qJST+m7a44GMHH+2PoaLT08vjOZvLRVHwaWZ5MjyvTw35HwMVMXPdC+
|
---|
518 | GruNpqSPn/1y/9R668LQZb6Wnfn6+GXjBIeRqQNTQxfzI2QN0CLZqV89Vhuc
|
---|
519 | /E2UZTMNcIxmb/1GeDP4XNCz3b+WgW+d6jfnN2yC94KmrZdPMfBOQXua50FN
|
---|
520 | uPXSZsnrNwMjvlp9TN+6ET71sDNEjhniyNECba6cBnQeGa71WTREZbmM5RoB
|
---|
521 | deCNcs03CzPCQa3rOrWyanC1crR33XcjFF5GU4byBji/Jfi58wFj7FtTpJXm
|
---|
522 | oAqGYW5OtiPGeFww2G40SQUsxxwNNT1MsGXSNe9kvTJcvObwOptrgkvLOW2u
|
---|
523 | AsowZFmffKXXBIe5pG77tcogOarGrOkzwd/fHLMs1yhDqgxfaf+QCdoGqO3Q
|
---|
524 | /UOH2NMPQ8kfTDAnLj5H7jv9fz+wQejyDxN89eaqquggHUhaPJY3JZh4mtJe
|
---|
525 | H1dOB/uOkLmHUkzUtCn/lHaVDsl+I+UvZJj48VpXS0EpHVYu1RKn5JlYdY6n
|
---|
526 | 9EERHaaIIW83KzPRSfQO908mHdpnhmNq9Jnoa5Lde+0IHdZm2Go+ZzDxW/FN
|
---|
527 | xpPDdACN+6P9RkxM4g22H4ygQy37nPW8KRODZYlnhEPocK3XRpK5lYkcnpwd
|
---|
528 | HDYdxkJrWu1tmFi74aVR4V46KAjTj7LsmNjo9K2njkWHXKvlMY4DEys/rkgt
|
---|
529 | 7KID931QbsZfTLRXONlAdqGDMGfI9rITE7lL/NJMJzrYkG3+VDoz0fIai+K5
|
---|
530 | gw4JNdWVT12ZOOpgw42zp8N/AVL8ysw=
|
---|
531 | "]]}}, {}, {}}},
|
---|
532 | AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
|
---|
533 | Axes->{True, True},
|
---|
534 | AxesLabel->{None, None},
|
---|
535 | AxesOrigin->{0, 0},
|
---|
536 | DisplayFunction->Identity,
|
---|
537 | Frame->{{False, False}, {False, False}},
|
---|
538 | FrameLabel->{{None, None}, {None, None}},
|
---|
539 | FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
|
---|
540 | GridLines->{None, None},
|
---|
541 | GridLinesStyle->Directive[
|
---|
542 | GrayLevel[0.5, 0.4]],
|
---|
543 | ImagePadding->All,
|
---|
544 | Method->{
|
---|
545 | "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
|
---|
546 | AbsolutePointSize[6], "ScalingFunctions" -> None,
|
---|
547 | "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
|
---|
548 | (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
|
---|
549 | Part[#, 1]],
|
---|
550 | (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
|
---|
551 | Part[#, 2]]}& ), "CopiedValueFunction" -> ({
|
---|
552 | (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
|
---|
553 | Part[#, 1]],
|
---|
554 | (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
|
---|
555 | Part[#, 2]]}& )}},
|
---|
556 | PlotRange->{{0., 1.1309099793970511`*^11}, {0, 0.1}},
|
---|
557 | PlotRangeClipping->True,
|
---|
558 | PlotRangePadding->{{
|
---|
559 | Scaled[0.02],
|
---|
560 | Scaled[0.02]}, {0, 0}},
|
---|
561 | Ticks->{Automatic, Automatic}]], "Output",
|
---|
562 | CellChangeTimes->{
|
---|
563 | 3.695999003977488*^9, 3.696001022483341*^9, {3.696001180382105*^9,
|
---|
564 | 3.696001235804201*^9}, {3.696001273796363*^9, 3.69600128100384*^9}, {
|
---|
565 | 3.696001387018463*^9, 3.6960014157861347`*^9}, {3.696001477966955*^9,
|
---|
566 | 3.696001520816638*^9}}]
|
---|
567 | }, Open ]],
|
---|
568 |
|
---|
569 | Cell[CellGroupData[{
|
---|
570 |
|
---|
571 | Cell[BoxData[{
|
---|
572 | RowBox[{"Clear", "[",
|
---|
573 | RowBox[{"r", ",", "const"}], "]"}], "\[IndentingNewLine]",
|
---|
574 | RowBox[{"Manipulate", "[",
|
---|
575 | RowBox[{
|
---|
576 | RowBox[{"Plot", "[",
|
---|
577 | RowBox[{
|
---|
578 | RowBox[{"cs",
|
---|
579 | SqrtBox[
|
---|
580 | RowBox[{"-",
|
---|
581 | RowBox[{"ProductLog", "[",
|
---|
582 | RowBox[{"-",
|
---|
583 | FractionBox[
|
---|
584 | SuperscriptBox["\[ExponentialE]",
|
---|
585 | RowBox[{
|
---|
586 | RowBox[{"-", "const"}], "-",
|
---|
587 | FractionBox[
|
---|
588 | RowBox[{"4", " ", "rcs"}], "r"]}]],
|
---|
589 | SuperscriptBox[
|
---|
590 | RowBox[{"(",
|
---|
591 | FractionBox["r", "rcs"], ")"}], "4"]]}], "]"}]}]]}], ",",
|
---|
592 | RowBox[{"{",
|
---|
593 | RowBox[{"r", ",", "r0", ",", "diskThickness"}], "}"}], ",",
|
---|
594 | RowBox[{"AxesLabel", "\[Rule]",
|
---|
595 | RowBox[{"{",
|
---|
596 | RowBox[{"\"\<Radius (cm)\>\"", ",", "\"\<Wind Velocity (cm/s)\>\""}],
|
---|
597 | "}"}]}]}], "]"}], ",",
|
---|
598 | RowBox[{"{",
|
---|
599 | RowBox[{"const", ",", "5", ",", "50"}], "}"}]}], "]"}]}], "Input",
|
---|
600 | CellChangeTimes->{{3.6959986045758457`*^9, 3.6959986307674313`*^9}, {
|
---|
601 | 3.695999050789505*^9, 3.6959991273003893`*^9}, {3.695999182457287*^9,
|
---|
602 | 3.695999371280669*^9}}],
|
---|
603 |
|
---|
604 | Cell[BoxData[
|
---|
605 | TagBox[
|
---|
606 | StyleBox[
|
---|
607 | DynamicModuleBox[{$CellContext`const$$ = 5, Typeset`show$$ = True,
|
---|
608 | Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
|
---|
609 | Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
|
---|
610 | "\"untitled\"", Typeset`specs$$ = {{
|
---|
611 | Hold[$CellContext`const$$], 5, 50}}, Typeset`size$$ = {
|
---|
612 | 360., {84., 90.}}, Typeset`update$$ = 0, Typeset`initDone$$,
|
---|
613 | Typeset`skipInitDone$$ = True, $CellContext`const$83919$$ = 0},
|
---|
614 | DynamicBox[Manipulate`ManipulateBoxes[
|
---|
615 | 1, StandardForm, "Variables" :> {$CellContext`const$$ = 5},
|
---|
616 | "ControllerVariables" :> {
|
---|
617 | Hold[$CellContext`const$$, $CellContext`const$83919$$, 0]},
|
---|
618 | "OtherVariables" :> {
|
---|
619 | Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
|
---|
620 | Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
|
---|
621 | Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
|
---|
622 | Typeset`skipInitDone$$}, "Body" :>
|
---|
623 | Plot[$CellContext`cs
|
---|
624 | Sqrt[-ProductLog[-(
|
---|
625 | E^(-$CellContext`const$$ -
|
---|
626 | 4 $CellContext`rcs/$CellContext`r)/($CellContext`r/$\
|
---|
627 | CellContext`rcs)^4)]], {$CellContext`r, $CellContext`r0, \
|
---|
628 | $CellContext`diskThickness},
|
---|
629 | AxesLabel -> {"Radius (cm)", "Wind Velocity (cm/s)"}],
|
---|
630 | "Specifications" :> {{$CellContext`const$$, 5, 50}}, "Options" :> {},
|
---|
631 | "DefaultOptions" :> {}],
|
---|
632 | ImageSizeCache->{407., {127., 134.}},
|
---|
633 | SingleEvaluation->True],
|
---|
634 | Deinitialization:>None,
|
---|
635 | DynamicModuleValues:>{},
|
---|
636 | SynchronousInitialization->True,
|
---|
637 | UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
|
---|
638 | UnsavedVariables:>{Typeset`initDone$$},
|
---|
639 | UntrackedVariables:>{Typeset`size$$}], "Manipulate",
|
---|
640 | Deployed->True,
|
---|
641 | StripOnInput->False],
|
---|
642 | Manipulate`InterpretManipulate[1]]], "Output",
|
---|
643 | CellChangeTimes->{{3.695999088873538*^9, 3.695999129778791*^9}, {
|
---|
644 | 3.6959992797917957`*^9, 3.695999291254404*^9}, {3.6959993437161713`*^9,
|
---|
645 | 3.6959993719461937`*^9}, 3.696001022528327*^9, 3.696001180410746*^9,
|
---|
646 | 3.696001235842011*^9, 3.696001415870562*^9, 3.696001478049492*^9,
|
---|
647 | 3.6960015208843517`*^9}]
|
---|
648 | }, Open ]]
|
---|
649 | },
|
---|
650 | WindowSize->{960, 1028},
|
---|
651 | WindowMargins->{{0, Automatic}, {0, Automatic}},
|
---|
652 | FrontEndVersion->"11.0 for Linux x86 (64-bit) (July 28, 2016)",
|
---|
653 | StyleDefinitions->"Default.nb"
|
---|
654 | ]
|
---|
655 | (* End of Notebook Content *)
|
---|
656 |
|
---|
657 | (* Internal cache information *)
|
---|
658 | (*CellTagsOutline
|
---|
659 | CellTagsIndex->{}
|
---|
660 | *)
|
---|
661 | (*CellTagsIndex
|
---|
662 | CellTagsIndex->{}
|
---|
663 | *)
|
---|
664 | (*NotebookFileOutline
|
---|
665 | Notebook[{
|
---|
666 | Cell[558, 20, 2828, 78, 409, "Input"],
|
---|
667 | Cell[CellGroupData[{
|
---|
668 | Cell[3411, 102, 355, 9, 87, "Input"],
|
---|
669 | Cell[3769, 113, 283, 4, 30, "Output"]
|
---|
670 | }, Open ]],
|
---|
671 | Cell[CellGroupData[{
|
---|
672 | Cell[4089, 122, 869, 19, 84, "Input"],
|
---|
673 | Cell[4961, 143, 780, 14, 40, "Message"],
|
---|
674 | Cell[5744, 159, 873, 19, 72, "Output"]
|
---|
675 | }, Open ]],
|
---|
676 | Cell[CellGroupData[{
|
---|
677 | Cell[6654, 183, 1369, 39, 127, "Input"],
|
---|
678 | Cell[8026, 224, 2154, 44, 342, "Output"]
|
---|
679 | }, Open ]],
|
---|
680 | Cell[10195, 271, 2116, 61, 244, "Input"],
|
---|
681 | Cell[CellGroupData[{
|
---|
682 | Cell[12336, 336, 706, 12, 89, "Input"],
|
---|
683 | Cell[13045, 350, 359, 5, 30, "Output"],
|
---|
684 | Cell[13407, 357, 359, 5, 30, "Output"]
|
---|
685 | }, Open ]],
|
---|
686 | Cell[CellGroupData[{
|
---|
687 | Cell[13803, 367, 1870, 47, 164, "Input"],
|
---|
688 | Cell[15676, 416, 8158, 149, 253, "Output"]
|
---|
689 | }, Open ]],
|
---|
690 | Cell[CellGroupData[{
|
---|
691 | Cell[23871, 570, 1139, 31, 168, "Input"],
|
---|
692 | Cell[25013, 603, 2144, 43, 278, "Output"]
|
---|
693 | }, Open ]]
|
---|
694 | }
|
---|
695 | ]
|
---|
696 | *)
|
---|
697 |
|
---|