Blog: Update 2/22: unreal_Parker_wind.nb

File unreal_Parker_wind.nb, 27.7 KB (added by adebrech, 8 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 11.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 158, 7]
13NotebookDataLength[ 28215, 689]
14NotebookOptionsPosition[ 27173, 649]
15NotebookOutlinePosition[ 27506, 664]
16CellTagsIndexPosition[ 27463, 661]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21Cell[BoxData[{
22 RowBox[{
23 RowBox[{"\[Lambda]", "=", "17.369"}], ";"}], "\[IndentingNewLine]",
24 RowBox[{
25 RowBox[{"k", "=",
26 RowBox[{"1.388", "*",
27 SuperscriptBox["10",
28 RowBox[{"-", "16"}]]}]}], ";"}], "\[IndentingNewLine]",
29 RowBox[{
30 RowBox[{"G", "=",
31 RowBox[{"6.67", "*",
32 SuperscriptBox["10",
33 RowBox[{"-", "8"}]]}]}], ";"}], "\[IndentingNewLine]",
34 RowBox[{
35 RowBox[{"mH", "=",
36 RowBox[{"1.6733", "*",
37 SuperscriptBox["10",
38 RowBox[{"-", "24"}]]}]}], ";"}], "\[IndentingNewLine]",
39 RowBox[{
40 RowBox[{"M", "=",
41 RowBox[{"1.404", "*", "1.898", "*",
42 SuperscriptBox["10", "30"]}]}], ";"}], "\[IndentingNewLine]",
43 RowBox[{
44 RowBox[{"T0", "=",
45 SuperscriptBox["10", "4"]}], ";"}], "\[IndentingNewLine]",
46 RowBox[{
47 RowBox[{"r0", "=",
48 RowBox[{"1.736", "*", "6.9911", "*",
49 SuperscriptBox["10", "9"]}]}], ";"}], "\[IndentingNewLine]",
50 RowBox[{
51 RowBox[{"\[Rho]0", "=",
52 RowBox[{"3.2112", "*",
53 SuperscriptBox["10",
54 RowBox[{"-", "15"}]]}]}], ";"}], "\[IndentingNewLine]",
55 RowBox[{
56 RowBox[{"lScale", "=",
57 RowBox[{"3.427", "*",
58 SuperscriptBox["10", "11"]}]}], ";"}], "\[IndentingNewLine]",
59 RowBox[{
60 RowBox[{"velScale", "=", "3636589"}], ";"}], "\[IndentingNewLine]",
61 RowBox[{
62 RowBox[{"\[Rho]Scale", "=",
63 RowBox[{"3.2112", "*",
64 SuperscriptBox["10",
65 RowBox[{"-", "15"}]]}]}], ";"}], "\[IndentingNewLine]",
66 RowBox[{
67 RowBox[{"columnLength", "=",
68 RowBox[{"2.678", "*", "lScale"}]}], ";"}], "\[IndentingNewLine]",
69 RowBox[{
70 RowBox[{"cs", "=",
71 RowBox[{"0.25075", "*", "velScale"}]}], ";"}], "\[IndentingNewLine]",
72 RowBox[{
73 RowBox[{"\[Rho]cs", "=",
74 RowBox[{"1.28226", "*",
75 SuperscriptBox["10",
76 RowBox[{"-", "7"}]], "*", "\[Rho]Scale"}]}],
77 ";"}], "\[IndentingNewLine]",
78 RowBox[{
79 RowBox[{"rcs", "=",
80 RowBox[{"0.312048", "*", "lScale"}]}], ";"}], "\[IndentingNewLine]",
81 RowBox[{
82 RowBox[{"MgIIFrac", "=",
83 SuperscriptBox["10",
84 RowBox[{"-", "5"}]]}], ";"}], "\[IndentingNewLine]",
85 RowBox[{
86 RowBox[{"MgIIColDensity", "=",
87 RowBox[{"2", "*",
88 SuperscriptBox["10", "17"]}]}], ";"}], "\[IndentingNewLine]",
89 RowBox[{
90 RowBox[{"diskThickness", "=",
91 RowBox[{"0.3", "*", "lScale"}]}], ";"}]}], "Input",
92 CellChangeTimes->{{3.69599086532997*^9, 3.6959909593582973`*^9}, {
93 3.695991257965865*^9, 3.695991286575967*^9}, {3.6959914950278397`*^9,
94 3.695991514926338*^9}, {3.6959916336066637`*^9, 3.695991637623871*^9}, {
95 3.695991679758903*^9, 3.695991695647307*^9}, {3.695993163291773*^9,
96 3.695993163975801*^9}, {3.695993657191197*^9, 3.695993692984427*^9}, {
97 3.695997247216477*^9, 3.695997255252109*^9}, {3.695997300979959*^9,
98 3.695997301388824*^9}, {3.696000875246347*^9, 3.6960008840518017`*^9}, {
99 3.6960009462391243`*^9, 3.696000948786314*^9}}],
100
101Cell[CellGroupData[{
102
103Cell[BoxData[{
104 RowBox[{
105 RowBox[{"ndH", "=",
106 FractionBox["MgIIColDensity",
107 RowBox[{"MgIIFrac", " ", "columnLength"}]]}],
108 ";"}], "\[IndentingNewLine]",
109 RowBox[{"Pd", "=",
110 RowBox[{"ndH", " ", "k", " ", "T0"}]}]}], "Input",
111 CellChangeTimes->{{3.695991697522257*^9, 3.6959917098592377`*^9}, {
112 3.696000916554201*^9, 3.69600100915373*^9}}],
113
114Cell[BoxData["0.03024786908338714`"], "Output",
115 CellChangeTimes->{
116 3.695991698732663*^9, 3.695991729233444*^9, {3.69600101634514*^9,
117 3.6960010222842093`*^9}, 3.696001180142692*^9, 3.696001235659919*^9,
118 3.6960014156359253`*^9, 3.696001477756415*^9, 3.6960015204184113`*^9}]
119}, Open ]],
120
121Cell[CellGroupData[{
122
123Cell[BoxData[{
124 RowBox[{"Clear", "[", "const", "]"}], "\[IndentingNewLine]",
125 RowBox[{"v", "=",
126 RowBox[{"Solve", "[",
127 RowBox[{
128 RowBox[{
129 RowBox[{"\[Psi]", "-",
130 RowBox[{"Log", "[", "\[Psi]", "]"}]}], "\[Equal]",
131 RowBox[{
132 RowBox[{"4",
133 RowBox[{"Log", "[", "\[Xi]", "]"}]}], "+",
134 FractionBox["4", "\[Xi]"], "+", "const"}]}], ",", "\[Psi]"}],
135 "]"}]}]}], "Input",
136 CellChangeTimes->{{3.69599086532997*^9, 3.6959909593582973`*^9}, {
137 3.695991257965865*^9, 3.695991286575967*^9}, {3.6959914950278397`*^9,
138 3.69599150258272*^9}, {3.695993060389048*^9, 3.695993175341618*^9}, {
139 3.695993505258654*^9, 3.695993528763309*^9}, {3.695993573570038*^9,
140 3.695993587507979*^9}, {3.6959936953768883`*^9, 3.6959937063828373`*^9}, {
141 3.695997307856081*^9, 3.695997308349112*^9}, {3.696001460723878*^9,
142 3.696001468067156*^9}}],
143
144Cell[BoxData[
145 TemplateBox[{
146 "Solve","ifun",
147 "\"Inverse functions are being used by \
148\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
149Reduce for complete solution information.\"",2,907,47,25837098451705269290,
150 "Local"},
151 "MessageTemplate"]], "Message", "MSG",
152 CellChangeTimes->{{3.695990953805581*^9, 3.695990963176866*^9},
153 3.69599126106061*^9, 3.6959914265697203`*^9, 3.695991725272403*^9, {
154 3.6959932390358477`*^9, 3.695993263609375*^9}, 3.695993590704383*^9, {
155 3.695993659602387*^9, 3.6959937071877413`*^9}, {3.695997304600624*^9,
156 3.695997331171455*^9}, 3.696001022357257*^9, 3.696001180199938*^9,
157 3.696001235689953*^9, 3.696001415678618*^9, {3.6960014687256413`*^9,
158 3.696001477841704*^9}, 3.6960015205035553`*^9}],
159
160Cell[BoxData[
161 RowBox[{"{",
162 RowBox[{"{",
163 RowBox[{"\[Psi]", "\[Rule]",
164 RowBox[{"-",
165 RowBox[{"ProductLog", "[",
166 RowBox[{"-",
167 FractionBox[
168 SuperscriptBox["\[ExponentialE]",
169 RowBox[{
170 RowBox[{"-", "const"}], "-",
171 FractionBox["4", "\[Xi]"]}]],
172 SuperscriptBox["\[Xi]", "4"]]}], "]"}]}]}], "}"}], "}"}]], "Output",
173 CellChangeTimes->{{3.695990953636207*^9, 3.695990963188539*^9},
174 3.695991261076329*^9, 3.695991426591557*^9, 3.695991725278962*^9, {
175 3.6959932390462008`*^9, 3.695993263618636*^9}, 3.695993590715846*^9, {
176 3.6959936596106358`*^9, 3.6959937071992188`*^9}, {3.6959973046092787`*^9,
177 3.6959973311786413`*^9}, 3.6960010223680477`*^9, 3.696001180213558*^9,
178 3.696001235698072*^9, 3.6960014156927156`*^9, {3.696001468733602*^9,
179 3.696001477852221*^9}, 3.696001520512999*^9}]
180}, Open ]],
181
182Cell[CellGroupData[{
183
184Cell[BoxData[
185 RowBox[{"Manipulate", "[",
186 RowBox[{
187 RowBox[{"Plot", "[",
188 RowBox[{
189 RowBox[{"{",
190 RowBox[{
191 SqrtBox[
192 RowBox[{"-",
193 RowBox[{"ProductLog", "[",
194 RowBox[{"-",
195 FractionBox[
196 SuperscriptBox["\[ExponentialE]",
197 RowBox[{
198 RowBox[{"-", "const"}], "-",
199 FractionBox["4", "\[Xi]"]}]],
200 SuperscriptBox["\[Xi]", "4"]]}], "]"}]}]], ",",
201 SqrtBox[
202 RowBox[{"-",
203 RowBox[{"ProductLog", "[",
204 RowBox[{
205 RowBox[{"-", "1"}], ",",
206 RowBox[{"-",
207 FractionBox[
208 SuperscriptBox["\[ExponentialE]",
209 RowBox[{
210 RowBox[{"-", "const"}], "-",
211 FractionBox["4", "\[Xi]"]}]],
212 SuperscriptBox["\[Xi]", "4"]]}]}], "]"}]}]]}], "}"}], ",",
213 RowBox[{"{",
214 RowBox[{"\[Xi]", ",", "0.001", ",", "3"}], "}"}], ",",
215 RowBox[{"PlotRange", "\[Rule]",
216 RowBox[{"{",
217 RowBox[{"0", ",", "2"}], "}"}]}]}], "]"}], ",",
218 RowBox[{"{",
219 RowBox[{"const", ",",
220 RowBox[{"-", "4.5"}], ",", "5", ",", "0.1"}], "}"}]}], "]"}]], "Input",
221 CellChangeTimes->{{3.6959940220744257`*^9, 3.6959940543158617`*^9}, {
222 3.6959949239961433`*^9, 3.695994926246552*^9}, {3.695999918929987*^9,
223 3.695999919692638*^9}}],
224
225Cell[BoxData[
226 TagBox[
227 StyleBox[
228 DynamicModuleBox[{$CellContext`const$$ = -4.5, Typeset`show$$ = True,
229 Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
230 Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
231 "\"untitled\"", Typeset`specs$$ = {{
232 Hold[$CellContext`const$$], -4.5, 5, 0.1}}, Typeset`size$$ = {
233 360., {116., 122.}}, Typeset`update$$ = 0, Typeset`initDone$$,
234 Typeset`skipInitDone$$ = True, $CellContext`const$83773$$ = 0},
235 DynamicBox[Manipulate`ManipulateBoxes[
236 1, StandardForm, "Variables" :> {$CellContext`const$$ = -4.5},
237 "ControllerVariables" :> {
238 Hold[$CellContext`const$$, $CellContext`const$83773$$, 0]},
239 "OtherVariables" :> {
240 Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
241 Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
242 Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
243 Typeset`skipInitDone$$}, "Body" :> Plot[{
244 Sqrt[-
245 ProductLog[-(
246 E^(-$CellContext`const$$ -
247 4/$CellContext`\[Xi])/$CellContext`\[Xi]^4)]],
248 Sqrt[-
249 ProductLog[-1, -(
250 E^(-$CellContext`const$$ -
251 4/$CellContext`\[Xi])/$CellContext`\[Xi]^4)]]}, {$CellContext`\
252\[Xi], 0.001, 3}, PlotRange -> {0, 2}],
253 "Specifications" :> {{$CellContext`const$$, -4.5, 5, 0.1}},
254 "Options" :> {}, "DefaultOptions" :> {}],
255 ImageSizeCache->{407., {159., 166.}},
256 SingleEvaluation->True],
257 Deinitialization:>None,
258 DynamicModuleValues:>{},
259 SynchronousInitialization->True,
260 UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
261 UnsavedVariables:>{Typeset`initDone$$},
262 UntrackedVariables:>{Typeset`size$$}], "Manipulate",
263 Deployed->True,
264 StripOnInput->False],
265 Manipulate`InterpretManipulate[1]]], "Output",
266 CellChangeTimes->{{3.695994039524988*^9, 3.6959940552136707`*^9},
267 3.695994927159683*^9, 3.6959999201466713`*^9, 3.6960010226212997`*^9,
268 3.6960011805126667`*^9, 3.696001235936687*^9, 3.6960014159413548`*^9,
269 3.696001478149151*^9, 3.6960015206494226`*^9}]
270}, Open ]],
271
272Cell[BoxData[{
273 RowBox[{"Clear", "[",
274 RowBox[{"r", ",", "const"}], "]"}], "\[IndentingNewLine]",
275 RowBox[{
276 RowBox[{"v2", "=",
277 RowBox[{
278 RowBox[{"-",
279 RowBox[{"ProductLog", "[",
280 RowBox[{
281 RowBox[{"-",
282 SuperscriptBox["\[ExponentialE]",
283 RowBox[{"const", "-",
284 FractionBox[
285 RowBox[{"4", " ", "rcs"}], "r"]}]]}], " ",
286 FractionBox[
287 SuperscriptBox["rcs", "4"],
288 SuperscriptBox["r", "4"]]}], "]"}]}], "*",
289 SuperscriptBox["cs", "2"]}]}], ";"}], "\[IndentingNewLine]",
290 RowBox[{
291 RowBox[{"\[Rho]w", "=",
292 RowBox[{"\[Rho]cs", "*",
293 SuperscriptBox["\[ExponentialE]",
294 RowBox[{
295 RowBox[{
296 FractionBox[
297 RowBox[{
298 RowBox[{"-", "2"}], " ", "rcs"}], "r"],
299 RowBox[{"(",
300 RowBox[{
301 FractionBox["r", "rcs"], "-", "1"}], ")"}]}], "+",
302 RowBox[{
303 FractionBox["1", "2"],
304 RowBox[{"(",
305 RowBox[{"1", "+",
306 RowBox[{"ProductLog", "[",
307 RowBox[{
308 RowBox[{"-",
309 SuperscriptBox["\[ExponentialE]",
310 RowBox[{"const", "-",
311 FractionBox[
312 RowBox[{"4", " ", "rcs"}], "r"]}]]}], " ",
313 FractionBox[
314 SuperscriptBox["rcs", "4"],
315 SuperscriptBox["r", "4"]]}], "]"}]}], ")"}]}]}]]}]}],
316 ";"}], "\[IndentingNewLine]",
317 RowBox[{
318 RowBox[{"Pram", "=",
319 RowBox[{"\[Rho]w", " ", "v2"}]}], ";"}], "\[IndentingNewLine]",
320 RowBox[{
321 RowBox[{"Ptherm", "=",
322 RowBox[{
323 FractionBox["\[Rho]w", "mH"], "k", " ", "T0"}]}],
324 ";"}], "\[IndentingNewLine]",
325 RowBox[{
326 RowBox[{"Pw", "=",
327 RowBox[{"Pram", "+", "Ptherm"}]}], ";"}]}], "Input",
328 CellChangeTimes->{{3.69599662607765*^9, 3.695996690706132*^9}, {
329 3.695996746018608*^9, 3.695996756569799*^9}, {3.695997339881444*^9,
330 3.695997439029274*^9}, {3.69599749308746*^9, 3.695997550132204*^9}, {
331 3.6959976072488127`*^9, 3.695997609672474*^9}, {3.695997713311327*^9,
332 3.695997734727893*^9}, {3.695998409404564*^9, 3.695998414540102*^9}, {
333 3.69600136333967*^9, 3.696001371745738*^9}}],
334
335Cell[CellGroupData[{
336
337Cell[BoxData[{
338 RowBox[{
339 RowBox[{"const", "=", "42.07675"}], ";"}], "\[IndentingNewLine]",
340 RowBox[{
341 RowBox[{"r", "=", "diskThickness"}], ";"}], "\[IndentingNewLine]",
342 RowBox[{"Re", "[", "Pw", "]"}], "\[IndentingNewLine]", "Pd"}], "Input",
343 CellChangeTimes->{{3.69599773752188*^9, 3.695997838615436*^9}, {
344 3.6959978875274487`*^9, 3.6959979198140373`*^9}, {3.695997961136684*^9,
345 3.6959979627314777`*^9}, {3.695997997553903*^9, 3.695998017899214*^9}, {
346 3.695998294420507*^9, 3.695998297139968*^9}, {3.69599850382899*^9,
347 3.695998504004663*^9}, {3.695998707064492*^9, 3.695998748744124*^9}, {
348 3.6960010428924522`*^9, 3.696001164529364*^9}, {3.6960013077566423`*^9,
349 3.696001382718727*^9}}],
350
351Cell[BoxData["0.030247423986732917`"], "Output",
352 CellChangeTimes->{{3.695998707778885*^9, 3.695998749077634*^9}, {
353 3.6960010223968353`*^9, 3.696001180304755*^9}, 3.696001235728973*^9, {
354 3.6960012998193817`*^9, 3.696001314099737*^9}, {3.696001345468378*^9,
355 3.696001383115275*^9}, 3.696001415723221*^9, 3.696001477898816*^9,
356 3.69600152073048*^9}],
357
358Cell[BoxData["0.03024786908338714`"], "Output",
359 CellChangeTimes->{{3.695998707778885*^9, 3.695998749077634*^9}, {
360 3.6960010223968353`*^9, 3.696001180304755*^9}, 3.696001235728973*^9, {
361 3.6960012998193817`*^9, 3.696001314099737*^9}, {3.696001345468378*^9,
362 3.696001383115275*^9}, 3.696001415723221*^9, 3.696001477898816*^9,
363 3.696001520731721*^9}]
364}, Open ]],
365
366Cell[CellGroupData[{
367
368Cell[BoxData[{
369 RowBox[{"Clear", "[",
370 RowBox[{"r", ",", "const"}], "]"}], "\[IndentingNewLine]",
371 RowBox[{
372 RowBox[{"const", "=", "42.07675"}], ";"}], "\[IndentingNewLine]",
373 RowBox[{
374 RowBox[{"plot1", "=",
375 RowBox[{"Plot", "[",
376 RowBox[{
377 RowBox[{"{",
378 RowBox[{"Pd", ",",
379 RowBox[{"Re", "[", "Pw", "]"}]}], "}"}], ",",
380 RowBox[{"{",
381 RowBox[{"r", ",", "r0", ",",
382 RowBox[{"1.1", "diskThickness"}]}], "}"}], ",",
383 RowBox[{"PlotStyle", "\[Rule]",
384 RowBox[{"{",
385 RowBox[{"Blue", ",", "Orange"}], "}"}]}], ",",
386 RowBox[{"PlotRange", "\[Rule]",
387 RowBox[{"{",
388 RowBox[{"0", ",", "0.1"}], "}"}]}]}], "]"}]}],
389 ";"}], "\[IndentingNewLine]",
390 RowBox[{
391 RowBox[{"const", "=", "31.345"}], ";"}], "\[IndentingNewLine]",
392 RowBox[{
393 RowBox[{"plot2", "=",
394 RowBox[{"Plot", "[",
395 RowBox[{
396 RowBox[{"Re", "[", "Pw", "]"}], ",",
397 RowBox[{"{",
398 RowBox[{"r", ",", "r0", ",",
399 RowBox[{"1.1", "diskThickness"}]}], "}"}], ",",
400 RowBox[{"PlotStyle", "\[Rule]",
401 RowBox[{"{", "Green", "}"}]}], ",",
402 RowBox[{"PlotRange", "\[Rule]",
403 RowBox[{"{",
404 RowBox[{"0", ",", "0.1"}], "}"}]}]}], "]"}]}],
405 ";"}], "\[IndentingNewLine]",
406 RowBox[{"Show", "[",
407 RowBox[{"plot1", ",", "plot2"}], "]"}]}], "Input",
408 CellChangeTimes->{{3.695998140118844*^9, 3.695998163363934*^9}, {
409 3.6959981989904757`*^9, 3.695998284960801*^9}, {3.695998485032653*^9,
410 3.695998487943101*^9}, {3.695998684823001*^9, 3.695998687638802*^9}, {
411 3.695998766874777*^9, 3.695998840902828*^9}, {3.6959988737934713`*^9,
412 3.6959989258875027`*^9}, {3.6959989649791327`*^9, 3.695999003088049*^9}, {
413 3.6960010949695663`*^9, 3.696001095935904*^9}, {3.696001176488276*^9,
414 3.696001220650689*^9}, {3.696001261024543*^9, 3.6960012805960913`*^9},
415 3.696001492222665*^9}],
416
417Cell[BoxData[
418 GraphicsBox[{{{{}, {},
419 {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.],
420 LineBox[CompressedData["
4211:eJxTTMoPSmViYGAwAWIQ/SM6abnGbDanitZPij4/59lfeKd/bXYxB5y/vPEv
422C78PF5y/apGQdYEPH5wvYbxwSjmLIJw/db52buhNITh/D+fnjR+uisD5qkeP
423X5q1QQzOt6i7Gc+0WQLOZz0U68exRgrOFwl/LyHbLAPnn3251/99oxyc/+SZ
424j2GGvgKcby9X8lpdUhHOz7+yM/qYmBKc72DMZpXDrAznPxMoPPeBWQXOf2k8
425dfKR/wh+7//9x+a/UoXz2bw4N0S+VIPzFWwj2aWvq8P5/OuPi+y+oQHnR6e9
426D1p1VRPO9zgm+3/BQS04n2tpVmLZQW04P1dnn2HwBh04X/fnKaP6Wbpw/iGX
427by87Z+jB+T8sNPjntOrD+UxhNqVuzgZwvpmRY3XaQQR/V5KnBZe5IZy/8lJC
428wNxtCP6LadXyW3SN4Pxrfz+1FS1C8PWXVHoqKBrD+TfmMR8OnI7gv7kxZ3qR
429uAmcH5BuqSzej+AnzTByT2YxhfPvc1gfm9eM4K856/Yn9heC/+RiYi9PtRmc
430f7ri5raknwg+U0nIdJt8czh/ybp7l1jfI/jTbHOOBqVZIMIjPyzA/TaC7/jA
43130w7yhLOn7PU5/KkCwg+vy6D40ohKzi/acvmdftDEHwANjaIvg==
432 "]]},
433 {RGBColor[1, 0.5, 0], AbsoluteThickness[1.6], Opacity[1.],
434 LineBox[CompressedData["
4351:eJwBMQPO/CFib1JlAgAAADIAAAACAAAASCSf8maGKkKamZmZmZm5P0jGHf+g
436wSpCE9OrkTAhuT8KpWphdsErQnJE44jbT7c/bSy+MVOwLEI0PuaQ5Mm1Py35
437yjJ/mi1CbzsyxtpvtD/CRPbpiZguQnQf/fzzG7M/+DgoD5yFL0J4j8qcBvyx
438PwJWPHVGQzBC1BPfRf/fsD82MkF7ZsEwQhF49KpexK8/umJJOAo3MUL6J0ht
439gRKuP6nSYFCdtjFCUO0uY29irD/olnsftC0yQh1xqT1i76o/1v3yhnKiMkIC
440rhrFyZ6pPy+keUkgITNCRux2ZuxMqD/YngPDUZczQoizgu/jKKc/7Nicl3IX
441NELvPCNCJAOmP1BnOSMXjzRCQhOFjkkEpT9imDJHYwQ1Qnq+gTf+GqQ/3wg7
442xp6DNUIE7JbB1S6jP6zNRvxd+jVC21L/Jupgoj/k0WGNDHs2QkPkFNstkKE/
443y3jZtmL5NkLOOtT6ltCgPwJ0VJc8bzdCwo7b8soooD+krt7SBe83QkBgoryX
444+54/lj1sxVJmOEKtTeBoQs+dPzZvVlBH2zhClt0jbzu5nD9B4E82K1o5QrSZ
445Bw6UnJs/nKVM05LQOUIjrmgrvaGaP9hBuoaj0jlC+iiP5nudmj8T3ic6tNQ5
446QiVGHqk7mZo/ihYDodXYOULiZiFDvpCaP3mHuW4Y4TlCusdvwc9/mj9WaSYK
447nvE5QpXbQZ0jXpo/Dy0AQakSOkJq21aJjBuaP0rJbfS5FDpCU5fpjmsXmj+G
448ZdunyhY6QtGffZFLE5o//p22DuwaOkL4YGWMDguaP+wObdwuIzpC7UJdUKD6
449mT/I8Nl3tDM6QveFpcry2Zk/BI1HK8U1OkJDq5F64dWZPz8ptd7VNzpCU+N8
450ItHRmT+2YZBF9zs6QlNaFFmzyZk/pdJGEzpEOkIk96hYg7mZP+ButMZKRjpC
451WGXuv3m1mT8cCyJ6W0g6QgC3vRxxsZk/lEP94HxMOkL6wMG1YqmZP9DfapSN
452TjpCsqRa8VylmT8LfNhHnlA6Qt3CRSFYoZk/RhhG+65SOkLNfjVFVJ2ZP4K0
453s66/VDpChVrcXFGZmT+dJnTN
454 "]]}}, {}, {}}, {{{}, {},
455 {RGBColor[0, 1, 0], AbsoluteThickness[1.6], Opacity[1.],
456 LineBox[CompressedData["
4571:eJwV1vk/FIoagHFRGMuM3TBMYxCSrGMZ8vLKknQIUYYyIku2EKlJEcqWbAmV
458pUW5RUWSUpayRBqypqROiZMkOaEs994fns/3X3iUfMKc/Xh5eHj6/tf/XWD5
459lKsX8aPsT5sJmcXLkNk+ZDF1kx/dDFrbRPMuwwaG45uqOn60OfajYpf+ZXAh
460mokaDfBj5RY9OBN9CSobpSOtxQWwNyjkVrT0RbDWShch0AQw3GK+b6qpCN4W
4618F7v2iyAlpL6AerhRUCI/D7k4iCAXLFxfNBTCL6qHeY+pwVQuyZnW1t5AfzJ
462giHV8wIo62Xzct67ALJX7h+avCqATmcK/VIpBfB0sOxqeLMAglbEwq3cCyCf
463yhE6sSyAzsERz0fz8oE7rT1QFCmIBfP+HU+78sCfdT1sX4Ig7u80vvEnPw9W
4642hQIylmCaCjcak3xzQPNUoJZRaUgPn6cuji9kgvJLn+X1k0K4rKRLbiY54JZ
4653fmQ/n0ETPjRYvf9fTa8VhEVKAglYKohKko/yIagrFMlnscJ+O12lfzA2WzI
466Dwp//XchAXPlFacpFtkwq2BvMttPQCeJUj6vm1lQHr+8luQghFsbF4s2556D
467TQP9KWKeQvh7kHvic/g5uLOxkigRLITHPvyjTP3rHNS93kuWThfCMGL0HYLQ
468OWhXbdSkdAnh3Bn9CF5SJkx0JDirOQjj0x7JpC6tDAimsgbVPYVxnHOwVOPf
469dJiJ0PfcGCyMH9bc/mrZkA4LlE9+WunCGDdYP5rnmA6Codax+l3C6Js0xBPC
470SQN1CcEScBBBwr1IS425FLh1YEzF0lMEg3bw5jx6ngI6j+puYrAIti2cShjO
471TwFj38Bq63QRlAw7eKtySwrY1b5o3d4lgvtbNtjGZZ6BQI+Mb+4Oosj6su3p
472222nYbrSL2KPpyhKBjuOqiifhgg+83mPYFFcqRJeHVxKhqO3pnn2pouilfHN
4733CN3kyF1xVHKt0sUQwzmNkSvT4aKMgnTcAciXuF6G8qIJkEdu9PQh0VEqjCz
47488R0IrTSEvVcg4i4L/b9OT1uIny8/K+G8RkiFvzMbgjLTQT5oiEyzzMiDr9b
475y7OZlghpOZd/ZZqSsLR+09dZq1NQ6Ow+G29PQjMlQ+kEjVNwQ1xsOnIPCSO5
476tBQH0il4lhn/2T2GhO+HO1zPjSTAUppv3/pqEnJiMtyeRieAIUoPu0uLYYY/
477+6Tyg3hoKP0xwFUQQ5Z1qa5USTxsXdPdt01FDGOXEs8zUuLBuTGZa6ovhpvl
478WnUEPeMh1Hyhbf1OMZzjLVd4xxcP5cyR2i/pYugz1nmYyzoJZP3S3Ji14pjK
4798CFqusTBC08+kU5hcfRcGEzl0YkDTrLfKaqkOLZrrIbLisbB2LBGxHMlcXS9
480Xf+Cv/043Dh5z1ESxFE919N/2OI4GHW3CFXFimO+/6BQyxYOuAWOnxyfFkdp
481C8a9+95HQTDHbsHklziuGzHOzN56FOofV4RlLIuj4REvlWL1o0AVC9trICKB
482qXaEu9Y/YmG8dt40QUMCQ+0rDB8nxkL0WsK8oq8EUhbmds5WH4G8Ys2QXcMS
483aH6sw/GtTgyYN5i/sf0ggetObOn4IxsD42922jInJXDy9iW29Wo0GMscUVq/
484KIEM+1r2ru5oeJP+rH+CLIn3Q4r59oZGA/WolzlntyQO7sNrjfcPww3XTNKV
485QUlU8SmyOLIvCpwiyjh57yXx+YHu49rbo2Ax8/7k6S+SeDR1LpDfKArsO0da
486guclMY01ZCZBioJvlupHDGWlcKCUJ6awMRL0tJvGOtykMCPm4GcDjUh4TPh5
487d6ZfCusoRfE/iBFQ4RntwXonhYkU+ZGtq4cgv2qRt/WTFFY6P4u4/f0QROzi
488cS36KYVfhx41NHAPgUap6C9rcWlso63GDeQcgvPG6swiB2mUHC9pblM8BOH+
489Xs3WLdLY/eHssWoIh731Y0F3XkhjGSdJL0AvHLaL+kpSeqVRIKWzT0s1HDZU
490B/nOjEljstCY71ehcHi3EsNftCKN5bQ2wp7KMLA/n20/YyKD5h3ldp6fQ0H1
491eVtv4R0ZnBhnsKYCQ0BIZCn8ap0M/hqdtLLYGQLTzjqkykYZvBtHsKoxDoHa
492sQvbm7gyyNYZKf4jEAJ2S4HPvszIoLVjQNWaG8EQpC9Sa6Ari7yfGMWPvh2E
493ylKngu67shgh316ScDYIsicSjYYeyuJnZvfpyNggiNZ+2P+hSRbVhpst4nyD
494ABqUJP7tkcXIrdHHxphBwB2aTaXMyqKPnFbI64lA+EnK4wTokVFdiabjuC0Q
495jOOG9/FWk3FiV9qbs5QAsM3MiRmvJyPtwW9iEyEA3Ep2ZL5oJiOb9SZNYMEf
496Djc3PcnuJSMoTI1x+/zhHn+FovIsGVfMeXJ3ZvqDZubREStdOUyLUmiaEfAH
497agnFPalKDnO3O66M8h8Arbv9oYEP5HB9+aN09rwfmDVnJu94KodKfWVjc1/8
498gPWJr1b6lRyWzpOid3T4wQX1Kanr03IoEfPsdku6H0jcfdzbqiWPbquD56tk
499/GBds9dfgrfkUdSu0XiC4QsegmdKfavl0a/vei9o+ELlX/fmGuvlsezj7otX
500FHzBbYS/KLZDHh97eZ3I5POF63NVX/4Zl8ceDXbnr579YKfGG/9SiYKv+u8I
501/wrfD+np16uz8ykok+ry0OmBD0i5fycrnlJAqqJtaLoPG/ZlvWCT0xSQ86N8
5025IY7Gyo6r1VI5ijgXkv1J68c2GBh4WkmdEUBX07K3zIzYsNBjY59880KWLnm
503QXWWCBua/5Rd7+FVRCf22ILCQ28IL3EzSE5QxGezPwe95bzh5WSD4/d4KvK0
504U2dgwgs89xD6fFKoqEs6/Iky5AVT7a67B85RcdE1TWtduxeI3Pjq3VBMxS8V
505QQmr5V7gcEAuIq2BigbNVYVZAV7Q9TEqV22Rimn0gnHqlCe8GNEc3he+Huui
506HNYcX2LBp3EH3QBtGlr9Xrp4DDyg+RRDh6RPwyf/yeVJ1vOAYhpVu9aQhg1u
507OzULVT3Aw+P7prXmNBy4z658L+wB3JdZ6iUONPw52eI2OrQHHtUMrB8KpOHH
508hU91pVF7IDvBm2h3lYYeLm9OrN7bDUCN+qomp4TbJ/lHdLe5A5nB8KMqKuFh
509lepozhZ3mNn+a1RKSQk11jwncnXdoSz2SO8aDSW0+PyFmC3vDuv6OQ9HjJWw
510/XHUjpNTbtCZlnQ6c7cSxkTMv13OcgP3xfPK8/lKaO8UGGDx9y4I63vIapWh
51140fTYsr6S65goc/PDOZTxspNP1VNkpxhXOxQ9wyfCnJmRYp6LjjBpH5ezrNV
512Faypn+7p+r0DMlafthb/o4qYl5H9c/924Lcn3NkzuQHDd5JJw7N2QNuyR4Ay
513qIbvcy5Ud83ZAKmqTerRkDpuaaldXiZaA+vAd+eKfg3cJlN3gHTQCuxaFVdL
514mjaiWoEn6ywRQehaEDu6SRMN4p0ShRssIGTTE12XO5vwdDtV19gaQGvxhd6J
515Qi00f3m/vshpCzRv/TWZcmEzkq9kl0X5mcKCsTrpYpI2No+peow8NwFeN7PD
516NlY66Jb9asF+kzEY6lkeO9Ckg9+6TdqvPjGEep9txkJGuqi1bv4jO5kBN3u9
517nS7V6qJST+m7a44GMHH+2PoaLT08vjOZvLRVHwaWZ5MjyvTw35HwMVMXPdC+
518GruNpqSPn/1y/9R668LQZb6Wnfn6+GXjBIeRqQNTQxfzI2QN0CLZqV89Vhuc
519/E2UZTMNcIxmb/1GeDP4XNCz3b+WgW+d6jfnN2yC94KmrZdPMfBOQXua50FN
520uPXSZsnrNwMjvlp9TN+6ET71sDNEjhniyNECba6cBnQeGa71WTREZbmM5RoB
521deCNcs03CzPCQa3rOrWyanC1crR33XcjFF5GU4byBji/Jfi58wFj7FtTpJXm
522oAqGYW5OtiPGeFww2G40SQUsxxwNNT1MsGXSNe9kvTJcvObwOptrgkvLOW2u
523AsowZFmffKXXBIe5pG77tcogOarGrOkzwd/fHLMs1yhDqgxfaf+QCdoGqO3Q
524/UOH2NMPQ8kfTDAnLj5H7jv9fz+wQejyDxN89eaqquggHUhaPJY3JZh4mtJe
525H1dOB/uOkLmHUkzUtCn/lHaVDsl+I+UvZJj48VpXS0EpHVYu1RKn5JlYdY6n
5269EERHaaIIW83KzPRSfQO908mHdpnhmNq9Jnoa5Lde+0IHdZm2Go+ZzDxW/FN
527xpPDdACN+6P9RkxM4g22H4ygQy37nPW8KRODZYlnhEPocK3XRpK5lYkcnpwd
528HDYdxkJrWu1tmFi74aVR4V46KAjTj7LsmNjo9K2njkWHXKvlMY4DEys/rkgt
5297KID931QbsZfTLRXONlAdqGDMGfI9rITE7lL/NJMJzrYkG3+VDoz0fIai+K5
530gw4JNdWVT12ZOOpgw42zp8N/AVL8ysw=
531 "]]}}, {}, {}}},
532 AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
533 Axes->{True, True},
534 AxesLabel->{None, None},
535 AxesOrigin->{0, 0},
536 DisplayFunction->Identity,
537 Frame->{{False, False}, {False, False}},
538 FrameLabel->{{None, None}, {None, None}},
539 FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
540 GridLines->{None, None},
541 GridLinesStyle->Directive[
542 GrayLevel[0.5, 0.4]],
543 ImagePadding->All,
544 Method->{
545 "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
546 AbsolutePointSize[6], "ScalingFunctions" -> None,
547 "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
548 (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
549 Part[#, 1]],
550 (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
551 Part[#, 2]]}& ), "CopiedValueFunction" -> ({
552 (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
553 Part[#, 1]],
554 (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
555 Part[#, 2]]}& )}},
556 PlotRange->{{0., 1.1309099793970511`*^11}, {0, 0.1}},
557 PlotRangeClipping->True,
558 PlotRangePadding->{{
559 Scaled[0.02],
560 Scaled[0.02]}, {0, 0}},
561 Ticks->{Automatic, Automatic}]], "Output",
562 CellChangeTimes->{
563 3.695999003977488*^9, 3.696001022483341*^9, {3.696001180382105*^9,
564 3.696001235804201*^9}, {3.696001273796363*^9, 3.69600128100384*^9}, {
565 3.696001387018463*^9, 3.6960014157861347`*^9}, {3.696001477966955*^9,
566 3.696001520816638*^9}}]
567}, Open ]],
568
569Cell[CellGroupData[{
570
571Cell[BoxData[{
572 RowBox[{"Clear", "[",
573 RowBox[{"r", ",", "const"}], "]"}], "\[IndentingNewLine]",
574 RowBox[{"Manipulate", "[",
575 RowBox[{
576 RowBox[{"Plot", "[",
577 RowBox[{
578 RowBox[{"cs",
579 SqrtBox[
580 RowBox[{"-",
581 RowBox[{"ProductLog", "[",
582 RowBox[{"-",
583 FractionBox[
584 SuperscriptBox["\[ExponentialE]",
585 RowBox[{
586 RowBox[{"-", "const"}], "-",
587 FractionBox[
588 RowBox[{"4", " ", "rcs"}], "r"]}]],
589 SuperscriptBox[
590 RowBox[{"(",
591 FractionBox["r", "rcs"], ")"}], "4"]]}], "]"}]}]]}], ",",
592 RowBox[{"{",
593 RowBox[{"r", ",", "r0", ",", "diskThickness"}], "}"}], ",",
594 RowBox[{"AxesLabel", "\[Rule]",
595 RowBox[{"{",
596 RowBox[{"\"\<Radius (cm)\>\"", ",", "\"\<Wind Velocity (cm/s)\>\""}],
597 "}"}]}]}], "]"}], ",",
598 RowBox[{"{",
599 RowBox[{"const", ",", "5", ",", "50"}], "}"}]}], "]"}]}], "Input",
600 CellChangeTimes->{{3.6959986045758457`*^9, 3.6959986307674313`*^9}, {
601 3.695999050789505*^9, 3.6959991273003893`*^9}, {3.695999182457287*^9,
602 3.695999371280669*^9}}],
603
604Cell[BoxData[
605 TagBox[
606 StyleBox[
607 DynamicModuleBox[{$CellContext`const$$ = 5, Typeset`show$$ = True,
608 Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
609 Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
610 "\"untitled\"", Typeset`specs$$ = {{
611 Hold[$CellContext`const$$], 5, 50}}, Typeset`size$$ = {
612 360., {84., 90.}}, Typeset`update$$ = 0, Typeset`initDone$$,
613 Typeset`skipInitDone$$ = True, $CellContext`const$83919$$ = 0},
614 DynamicBox[Manipulate`ManipulateBoxes[
615 1, StandardForm, "Variables" :> {$CellContext`const$$ = 5},
616 "ControllerVariables" :> {
617 Hold[$CellContext`const$$, $CellContext`const$83919$$, 0]},
618 "OtherVariables" :> {
619 Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
620 Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
621 Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
622 Typeset`skipInitDone$$}, "Body" :>
623 Plot[$CellContext`cs
624 Sqrt[-ProductLog[-(
625 E^(-$CellContext`const$$ -
626 4 $CellContext`rcs/$CellContext`r)/($CellContext`r/$\
627CellContext`rcs)^4)]], {$CellContext`r, $CellContext`r0, \
628$CellContext`diskThickness},
629 AxesLabel -> {"Radius (cm)", "Wind Velocity (cm/s)"}],
630 "Specifications" :> {{$CellContext`const$$, 5, 50}}, "Options" :> {},
631 "DefaultOptions" :> {}],
632 ImageSizeCache->{407., {127., 134.}},
633 SingleEvaluation->True],
634 Deinitialization:>None,
635 DynamicModuleValues:>{},
636 SynchronousInitialization->True,
637 UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
638 UnsavedVariables:>{Typeset`initDone$$},
639 UntrackedVariables:>{Typeset`size$$}], "Manipulate",
640 Deployed->True,
641 StripOnInput->False],
642 Manipulate`InterpretManipulate[1]]], "Output",
643 CellChangeTimes->{{3.695999088873538*^9, 3.695999129778791*^9}, {
644 3.6959992797917957`*^9, 3.695999291254404*^9}, {3.6959993437161713`*^9,
645 3.6959993719461937`*^9}, 3.696001022528327*^9, 3.696001180410746*^9,
646 3.696001235842011*^9, 3.696001415870562*^9, 3.696001478049492*^9,
647 3.6960015208843517`*^9}]
648}, Open ]]
649},
650WindowSize->{960, 1028},
651WindowMargins->{{0, Automatic}, {0, Automatic}},
652FrontEndVersion->"11.0 for Linux x86 (64-bit) (July 28, 2016)",
653StyleDefinitions->"Default.nb"
654]
655(* End of Notebook Content *)
656
657(* Internal cache information *)
658(*CellTagsOutline
659CellTagsIndex->{}
660*)
661(*CellTagsIndex
662CellTagsIndex->{}
663*)
664(*NotebookFileOutline
665Notebook[{
666Cell[558, 20, 2828, 78, 409, "Input"],
667Cell[CellGroupData[{
668Cell[3411, 102, 355, 9, 87, "Input"],
669Cell[3769, 113, 283, 4, 30, "Output"]
670}, Open ]],
671Cell[CellGroupData[{
672Cell[4089, 122, 869, 19, 84, "Input"],
673Cell[4961, 143, 780, 14, 40, "Message"],
674Cell[5744, 159, 873, 19, 72, "Output"]
675}, Open ]],
676Cell[CellGroupData[{
677Cell[6654, 183, 1369, 39, 127, "Input"],
678Cell[8026, 224, 2154, 44, 342, "Output"]
679}, Open ]],
680Cell[10195, 271, 2116, 61, 244, "Input"],
681Cell[CellGroupData[{
682Cell[12336, 336, 706, 12, 89, "Input"],
683Cell[13045, 350, 359, 5, 30, "Output"],
684Cell[13407, 357, 359, 5, 30, "Output"]
685}, Open ]],
686Cell[CellGroupData[{
687Cell[13803, 367, 1870, 47, 164, "Input"],
688Cell[15676, 416, 8158, 149, 253, "Output"]
689}, Open ]],
690Cell[CellGroupData[{
691Cell[23871, 570, 1139, 31, 168, "Input"],
692Cell[25013, 603, 2144, 43, 278, "Output"]
693}, Open ]]
694}
695]
696*)
697